The Helly problem and best approximation in a space of continuous functions
Izvestiya. Mathematics , Tome 1 (1967) no. 3, pp. 623-637

Voir la notice de l'article provenant de la source Math-Net.Ru

Equivalence is verified between the Helly problem in the theory of moments and the problem of best approximation by elements of subspaces of finite defect. The existence and uniqueness conditions for the solution of these problems in a space of continuous functions are investigated.
@article{IM2_1967_1_3_a5,
     author = {A. L. Garkavi},
     title = {The {Helly} problem and best approximation in a space of continuous functions},
     journal = {Izvestiya. Mathematics },
     pages = {623--637},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a5/}
}
TY  - JOUR
AU  - A. L. Garkavi
TI  - The Helly problem and best approximation in a space of continuous functions
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 623
EP  - 637
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a5/
LA  - en
ID  - IM2_1967_1_3_a5
ER  - 
%0 Journal Article
%A A. L. Garkavi
%T The Helly problem and best approximation in a space of continuous functions
%J Izvestiya. Mathematics 
%D 1967
%P 623-637
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a5/
%G en
%F IM2_1967_1_3_a5
A. L. Garkavi. The Helly problem and best approximation in a space of continuous functions. Izvestiya. Mathematics , Tome 1 (1967) no. 3, pp. 623-637. http://geodesic.mathdoc.fr/item/IM2_1967_1_3_a5/