The stationary method in the abstract theory of scattering
Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 391-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

The wave operators and scattering matrix for pairs of self-adjoint operators are constructed in an explicit and invariant form. It is assumed that the perturbation is nuclear or “relatively nuclear”. The equivalence of the stationary and time-dependent versions of the theory is established. The results of the paper may be interpreted as justification for the stationary approach to scattering theory within the framework of the abstract theory of operators.
@article{IM2_1967_1_2_a11,
     author = {M. Sh. Birman and S. B. \`Entina},
     title = {The stationary method in the abstract theory of scattering},
     journal = {Izvestiya. Mathematics },
     pages = {391--420},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a11/}
}
TY  - JOUR
AU  - M. Sh. Birman
AU  - S. B. Èntina
TI  - The stationary method in the abstract theory of scattering
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 391
EP  - 420
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a11/
LA  - en
ID  - IM2_1967_1_2_a11
ER  - 
%0 Journal Article
%A M. Sh. Birman
%A S. B. Èntina
%T The stationary method in the abstract theory of scattering
%J Izvestiya. Mathematics 
%D 1967
%P 391-420
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a11/
%G en
%F IM2_1967_1_2_a11
M. Sh. Birman; S. B. Èntina. The stationary method in the abstract theory of scattering. Izvestiya. Mathematics , Tome 1 (1967) no. 2, pp. 391-420. http://geodesic.mathdoc.fr/item/IM2_1967_1_2_a11/

[1] Birman M. Sh., Entina S. B., “O statsionarnom podkhode v abstraktnoi teorii rasseyaniya”, Dokl. AN SSSR, 155:3 (1964), 506–508 | MR | Zbl

[2] Rosenblum M., “Perturbation of the continuous spectrum and unitary equivalence”, Pacif. J. Math., 7:1 (1957), 997–1010 | MR | Zbl

[3] Kato T., “Perturbation of continuous spectra by trace class operators”, Proc. Japan. Acad., 33:5 (1957), 260–264 | DOI | MR | Zbl

[4] Birman M. Sh., “Ob usloviyakh suschestvovaniya volnovykh operatorov”, Izv. AN SSSR. Ser. matem., 27 (1963), 883–906 | MR | Zbl

[5] Kato T., “Wave operators and unitary equivalence”, Pacif. J. Math., 15 (1965), 171–180 | MR | Zbl

[6] Birman M. Sh., “Lokalnyi priznak suschestvovaniya volnovykh operatorov”, Dokl. AN SSSR, 159:3 (1964), 485–488 | MR | Zbl

[7] Kuroda S. T., “Perturbation of continuous spectra by unbounded operators”, J. Math. Soc. Japan, 11:3 (1959), 247–262 ; J. Math. Soc. Japan, 12:3 (1960), 243–257 | MR | Zbl | MR | Zbl

[8] Stankevich I. V., “K teorii vozmuscheniya nepreryvnogo spektra”, Dokl. AN SSSR, 144:2 (1962), 279–282 | Zbl

[9] Friedrichs K. O., “On the perturbation of continuous spectra”, Comm. Pure and Appl. Math., 1 (1948), 361–406 | DOI | MR | Zbl

[10] Faddeev L. D., “O modeli Fridrikhsa v teorii vozmuscheniya nepreryvnogo spektra”, Tr. Mat. in-ta. im. V. A. Steklova AN SSSR, 73, 1964, 292–313 | MR | Zbl

[11] Reito P. A., “On gentle perturbations. I”, Comm. Pure and Appl. Math., 16 (1963), 279–303 ; “II”, 17 (1964), 257–292 | DOI | MR | DOI | MR

[12] Kato T., “On finite-dimensional perturbations of self-adjoint operators”, J. Math. Soc. Japan, 9:2 (1957), 239–249 | MR | Zbl

[13] Kuroda S. T., “Finite-dimensional perturbation and representation of scattering operator”, Pacif. J. Math., 13 (1963), 1305–1318 | MR | Zbl

[14] Birman M. Sh., “Ob usloviyakh suschestvovaniya volnovykh operatorov”, Dokl. AN SSSR, 143:3 (1962), 506–509 | MR | Zbl

[15] Birman M. Sh., Krein M. G., “K teorii volnovykh operatorov i operatorov rasseyaniya”, Dokl. AN SSSR, 144:3 (1962), 475–478 | MR | Zbl

[16] Birman M. Sh., “Ob odnom priznake suschestvovaniya volnovykh operatorov”, Dokl. AN SSSR, 147:5 (1962), 1008–1010 | MR

[17] L. de Branges, “Perturbation of self-adjoint transformations”, Amer. J. Math., 84:4 (1962), 543–560 | DOI | MR | Zbl

[18] Kuroda S. T., “On a stationary approach to scattering problem”, Bull. Amer. Math. Soc., 70:4 (1964), 556–560 | DOI | MR | Zbl

[19] Shveber S., Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, M., 1963

[20] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1966

[21] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[22] Gelfand I. M., Shilov G. E., Obobschennye funktsii, vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR

[23] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., L., 1950

[24] Krasnoselskiii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[25] Naimark M. A., Fomin S. V., “Nepreryvnye pryamye summy gilbertovykh prostranstv i nekotorye ikh primeneniya”, Uspekhi matem. nauk, 10:2(64) (1955), 111–142 | MR | Zbl

[26] Moren K., Metody gilbertova prostranstva, Mir, M., 1965 | MR