Plurisubharmonic functions in tubular radial domains.~II
Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 95-112

Voir la notice de l'article provenant de la source Math-Net.Ru

For plurisubharmonic functions in a convex radial tubular domain of growth of order $p$ with respect to the imaginary part, we study various growth indexes. The results of this study are then applied to establish a connection between the growth of the Fourier–Laplace transform of a generalized function and the properties of its decrease.
@article{IM2_1967_1_1_a6,
     author = {V. S. Vladimirov},
     title = {Plurisubharmonic functions in tubular radial {domains.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {95--112},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a6/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Plurisubharmonic functions in tubular radial domains.~II
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 95
EP  - 112
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a6/
LA  - en
ID  - IM2_1967_1_1_a6
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Plurisubharmonic functions in tubular radial domains.~II
%J Izvestiya. Mathematics 
%D 1967
%P 95-112
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a6/
%G en
%F IM2_1967_1_1_a6
V. S. Vladimirov. Plurisubharmonic functions in tubular radial domains.~II. Izvestiya. Mathematics , Tome 1 (1967) no. 1, pp. 95-112. http://geodesic.mathdoc.fr/item/IM2_1967_1_1_a6/