Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_4_a1, author = {Ahsan, Muhammad and Dama\v{s}evi\v{c}ius, Robertas and Shahzad, Sarmad}, title = {Optimizing infectious disease diagnostics through {AI-driven} hybrid decision making structures based on image analysis}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {549--563}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_4_a1/} }
TY - JOUR AU - Ahsan, Muhammad AU - Damaševičius, Robertas AU - Shahzad, Sarmad TI - Optimizing infectious disease diagnostics through AI-driven hybrid decision making structures based on image analysis JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 549 EP - 563 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_4_a1/ LA - en ID - IJAMCS_2024_34_4_a1 ER -
%0 Journal Article %A Ahsan, Muhammad %A Damaševičius, Robertas %A Shahzad, Sarmad %T Optimizing infectious disease diagnostics through AI-driven hybrid decision making structures based on image analysis %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 549-563 %V 34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_4_a1/ %G en %F IJAMCS_2024_34_4_a1
Ahsan, Muhammad; Damaševičius, Robertas; Shahzad, Sarmad. Optimizing infectious disease diagnostics through AI-driven hybrid decision making structures based on image analysis. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 4, pp. 549-563. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_4_a1/
[1] Atanassov, K.T. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Heidelberg.
[2] Chaira, T. (2011). Intuitionistic fuzzy set theory in medical imaging, International Journal of Soft Computing and Engineering 1(2): 24-26.
[3] Chin, C.-L., Lin, J.-C., Li, C.-Y., Sun, T.-Y., Chen, T., Lai, Y.-M., Huang, P.-C., Chang, S.-W. and Sharma, A.K. (2023). A novel fuzzy DBnet for medical image segmentation, Electronics 12(12): 2658.
[4] Curtis, C., Liu, C., Bollerman, T.J. and Pianykh, O.S. (2018). Machine learning for predicting patient wait times and appointment delays, Journal of the American College of Radiology 15(9): 1310-1316.
[5] Davenport, T.H., Hongsermeier, T. and Mc Cord, K.A. (2018). Using AI to improve electronic health records, Harvard Business Review 12(2): 1-6.
[6] Dey, N., Ashour, A.S., Shi, F. and Balas, V.E. (2018). Soft Computing Based Medical Image Analysis, Academic Press, London.
[7] Fauci, A.S. and Morens, D.M. (2012). The perpetual challenge of infectious diseases, New England Journal of Medicine 366(5): 454-461.
[8] Hasan, M.R., Ray, R.K. and Chowdhury, F.R. (2024). Employee performance prediction: An integrated approach of business analytics and machine learning, Journal of Business and Management Studies 6(1): 215-219.
[9] Hema, R., Sudharani, R. and Kavitha, M. (2023). A novel approach on plithogenic interval valued neutrosophic hyper-soft sets and its application in decision making, Indian Journal of Science and Technology 16(32): 2494-2502.
[10] Jiang, Y., Tang, Y. and Chen, Q. (2011). An adjustable approach to intuitionistic fuzzy soft sets based decision making, Applied Mathematical Modelling 35(2): 824-836.
[11] Kamacı, H. (2021). On hybrid structures of hypersoft sets and rough sets International Journal of Modern Science and Technology 6(4): 69-82.
[12] Kaur, P. and Chaira, T. (2021). A novel fuzzy approach for segmenting medical images, Soft Computing 25(5): 3565-3575.
[13] Koundal, D. and Sharma, B. (2019). Challenges and future directions in neutrosophic set-based medical image analysis, in Y. Guo and A.S. Ashour (Eds), Neutrosophic Set in Medical Image Analysis, Elsevier, Amsterdam, pp. 313-343.
[14] Lauraitis, A., Maskeliūnas, R. and Damaševičius, R. (2018). Ann and fuzzy logic based model to evaluate Huntington disease symptoms, Journal of Healthcare Engineering 2018(1): 1-10.
[15] Lin, D. and Lin, H. (2020). Translating artificial intelligence into clinical practice, Annals of Translational Medicine 8(11): 715-715.
[16] Lourenço-Silva, J. and Oliveira, A.L. (2021). Using soft labels to model uncertainty in medical image segmentation, International MICCAI Brainlesion Workshop, Brno, Czech Republic, pp. 585-596.
[17] Morse, S.S. (1995). Factors in the emergence of infectious disease, Emerging Infectious Diseases 1(1): 7-15.
[18] Mumuni, A.N., Hasford, F., Udeme, N.I., Dada, M.O. and Awojoyogbe, B.O. (2024). A SWOT analysis of artificial intelligence in diagnostic imaging in the developing world: making a case for a paradigm shift, Physical Sciences Reviews 9(1): 443-476.
[19] Nagaraja Kumar, N., Jayachandra Prasad, T. and Satya Prasad, K. (2023). Multimodal medical image fusion with improved multi-objective meta-heuristic algorithm with fuzzy entropy, Journal of Information & Knowledge Management 22(01): 2250063.
[20] Omoregbe, N.A., Ndaman, I.O., Misra, S., Abayomi-Alli, O.O., Damaševičius, R. and Dogra, A. (2020). Text messaging-based medical diagnosis using natural language processing and fuzzy logic, Journal of Healthcare Engineering 2020(1): 1-14.
[21] Palanisami, D., Mohan, N. and Ganeshkumar, L. (2022). A new approach of multi-modal medical image fusion using intuitionistic fuzzy set, Biomedical Signal Processing and Control 77(2): 103762.
[22] Prashant (2020). Chest X-ray COVID19 pneumonia dataset, https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia.
[23] Rahman, T. (2020). Tuberculosis (TB) chest X-ray dataset, https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset.
[24] Ramu, B. and Bansal, S. (2024). Highly accurate tumour region segmentation from magnetic resonance images using customized convolutional neural networks, Multimedia Tools and Applications 83(5): 14423-14445.
[25] Ray, R.K., Chowdhury, F.R. and Hasan, M.R. (2024). Blockchain applications in retail cybersecurity: Enhancing supply chain integrity, secure transactions, and data protection, Journal of Business and Management Studies 6(1): 206-214.
[26] Sundus, H., Khan, S.A., Chhabra, C., Jain, S., Aziz, R. and Kaur, H. (2024). Artificial intelligence and medical research: Accelerating innovation in healthcare, in S.A. Bansal and C. Chhabra (Eds), AI Horizons: Exploring Multidisciplinary Frutiers, Vol. III, Redshine Publication, Lahore, pp. 105-123.
[27] Vemuri, N., Thaneeru, N. and Tatikonda, V.M. (2023a). Securing trust: Ethical considerations in AI for cybersecurity, Journal of Knowledge Learning and Science Technology 2(2): 167-175.
[28] Vemuri, N., Thaneeru, N. and Tatikonda, V.M. (2023b). Smart farming revolution: Harnessing IoT for enhanced agricultural yield and sustainability, Journal of Knowledge Learning and Science Technology 2(2): 143-148.
[29] Vemuri, N.V.N. (2023). Enhancing human-robot collaboration in industry 4.0 with AI-driven HRI, Power System Technology 47(4): 341-358.
[30] Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8(3): 338-353.
[31] Yolcu, A., (2023). Intuitionistic fuzzy hypersoft topology and its applications to multi-criteria decision-making, Sigma Journal of Engineering and Natural Sciences 41(1): 106-118.