Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_3_a2, author = {Xia, Dexian and Fu, Xingjian}, title = {Observer-based sliding-mode fault-tolerant consistent control for hybrid event-triggered multi-agent systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {361--373}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a2/} }
TY - JOUR AU - Xia, Dexian AU - Fu, Xingjian TI - Observer-based sliding-mode fault-tolerant consistent control for hybrid event-triggered multi-agent systems JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 361 EP - 373 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a2/ LA - en ID - IJAMCS_2024_34_3_a2 ER -
%0 Journal Article %A Xia, Dexian %A Fu, Xingjian %T Observer-based sliding-mode fault-tolerant consistent control for hybrid event-triggered multi-agent systems %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 361-373 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a2/ %G en %F IJAMCS_2024_34_3_a2
Xia, Dexian; Fu, Xingjian. Observer-based sliding-mode fault-tolerant consistent control for hybrid event-triggered multi-agent systems. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 3, pp. 361-373. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a2/
[1] Åarzén, K.-E. (1999). A simple event-based PID controller, IFAC Proceedings Volumes 32(2): 8687-8692.
[2] Aranda-Escolastico, E., Guinaldo, M., Heradio, R., Chacon, J., Vargas, H., Sanchez, J. and Dormido, S. (2020). Event-based control: A bibliometric analysis of twenty years of research, IEEE Access 8: 47188-47208.
[3] Chen, L., Xue, H., Liang, H. and Zhao, M. (2023). Adaptive fuzzy fault-tolerant containment control for nonlinear multiagent systems based on modified distributed observer, Fuzzy Sets and Systems 464: 108431.
[4] Chen, S., Chen, B. and Shi, F. (2019). Distributed fault-tolerant consensus protocol for fuzzy multi-agent systems, Circuits, Systems, and Signal Processing 38(2): 611-624.
[5] Chen, S., Wang, M. and Li, Q. (2020). Second-order consensus of hybrid multi-agent systems with unknown disturbances via sliding mode control, IEEE Access 8: 34973-34980.
[6] Cheng, J., Park, J.H., Zhang, L. and Zhu, Y. (2016). An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies, IEEE Transactions on Fuzzy Systems 26(1): 6-18.
[7] Darvishpoor, S., Roshanian, J., Raissi, A. and Hassanalian, M. (2020). Configurations, flight mechanisms, and applications of unmanned aerial systems: A review, Progress in Aerospace Sciences 121: 100694.
[8] Domyshev, A. and Sidorov, D. (2022). Optimization of the structure of power system multi-agent control, IFAC-PapersOnLine 55(9): 250-255.
[9] Dong, L., Yu, D. and Nguang, S.K. (2019). Novel nonsingular terminal sliding mode control for multi-agent tracking systems with application to jerk circuit, IEEE Transactions on Circuits and Systems II: Express Briefs 67(8): 1429-1433.
[10] Dong, X., Hua, Y., Zhou, Y., Ren, Z. and Zhong, Y. (2018). Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems, IEEE Transactions on Automation Science and Engineering 16(1): 229-240.
[11] Garcia, E. and Antsaklis, P.J. (2012). Model-based event-triggered control for systems with quantization and time-varying network delays, IEEE Transactions on Automatic Control 58(2): 422-434.
[12] Gong, S., Zheng, M., Hu, J. and Zhang, A. (2023). Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus, International Journal of Applied Mathematics and Computer Science 33(3): 439-448, DOI: 10.34768/amcs-2023-0032.
[13] González, A., Sala, A. and Armesto, L. (2022). Decentralized multi-agent formation control with pole-region placement via cone-complementarity linearization, International Journal of Applied Mathematics and Computer Science 32(3): 415-428, DOI: 10.34768/amcs-2022-0030.
[14] Hao, L.-Y. and Yang, G.-H. (2013). Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization, ISA Transactions 52(5): 600-610.
[15] Hu, T., He, Z., Zhang, X. and Zhong, S. (2020). Leader-following consensus of fractional-order multi-agent systems based on event-triggered control, Nonlinear Dynamics 99(3): 2219-2232.
[16] Huang, B., Liu, Y., Xia, Z. and Wang, J. (2022). A bi-event-triggered multi-agent system for distributed optimization, IEEE Transactions on Network Science and Engineering 10(2): 1074-1084.
[17] Khalili, M., Zhang, X., Polycarpou, M.M., Parisini, T. and Cao, Y. (2018). Distributed adaptive fault-tolerant control of uncertain multi-agent systems, Automatica 87: 142-151.
[18] Khoygani, M. R., Ghasemi, R. and Ghayoomi, P. (2021). Robust observer-based control of nonlinear multi-omnidirectional wheeled robot systems via high order sliding-mode consensus protocol, International Journal of Automation and Computing 18(5): 787-801.
[19] Li, G., Wang, X. and Li, S. (2020a). Consensus control of higher-order Lipschitz non-linear multi-agent systems based on backstepping method, IET Control Theory & Applications 14(3): 490-498.
[20] Li, G., Wang, X. and Li, S. (2020b). Finite-time consensus algorithms of leader-follower higher-order multi-agent systems with uncertain nonlinearities, Journal of the Franklin Institute 357(16): 11939-11952.
[21] Li, J., Yuan, L., Chai, T. and Lewis, F.L. (2022a). Consensus of nonlinear multiagent systems with uncertainties using reinforcement learning based sliding mode control, IEEE Transactions on Circuits and Systems I: Regular Papers 70(1): 424-434.
[22] Li, J. (2013). Fault tolerant consensus of multi-agent systems with linear dynamics, Mathematical Problems in Engineering 2013(1): 465-671.
[23] Li, W., Niu, Y. and Cao, Z. (2022b). Event-triggered sliding mode control for multi-agent systems subject to channel fading, International Journal of Systems Science 53(6): 1233-1244.
[24] Li, X., Dong, X., Li, Q. and Ren, Z. (2019). Event-triggered time-varying formation control for general linear multi-agent systems, Journal of the Franklin Institute 356(17): 10179-10195.
[25] Li, Z., Yan, J., Yu, W. and Qiu, J. (2020c). Event-triggered control for a class of nonlinear multiagent systems with directed graph, IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(11): 6986-6993.
[26] Liu, C., Jiang, B., Zhang, K. and Patton, R.J. (2021). Distributed fault-tolerant consensus tracking control of multi-agent systems under fixed and switching topologies, IEEE Transactions on Circuits and Systems I: Regular Papers 68(4): 1646-1658.
[27] Ma, L., Wang, Z. and Lam, H.-K. (2016). Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations, IEEE Transactions on Automatic Control 62(7): 3524-3531.
[28] Menon, P.P. and Edwards, C. (2013). Robust fault estimation using relative information in linear multi-agent networks, IEEE Transactions on Automatic Control 59(2): 477-482.
[29] Parsa, P. and Akbarzadeh-T, M.-R. (2020). Combining consensus and tracking errors in sliding mode control of high order uncertain stochastic multi-agent systems, 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, pp. 1-8.
[30] Peng, C., Zhang, A. and Li, J. (2021). Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties, International Journal of Applied Mathematics and Computer Science 31(4): 635-645, DOI: 10.34768/amcs-2021-0044.
[31] Pham, T.V., Nguyen, Q.T., Messai, N. and Manamanni, N. (2020). Fault-tolerant tracking control for heterogeneous multi-agent systems, 2020 59th IEEE Conference on Decision and Control (CDC), Jeju Island, South Korea, pp. 2696-2701.
[32] Salmanpour, Y., Arefi, M.M., Khayatian, A. and Yin, S. (2023). Observer-based fault-tolerant finite-time control of nonlinear multiagent systems, IEEE Transactions on Neural Networks and Learning Systems 34(6): 1-10.
[33] Siavash, M., Majd, V. and Tahmasebi, M. (2019). Finite-time consensus control of Euler-Lagrange multi-agent systems in the presence of stochastic disturbances and actuator faults, Journal of Electrical and Computer Engineering Innovations 7(2): 163-172.
[34] Wang, J., Fang, Y.-M., Li, J.-X. and Li, K.-D. (2022). Fixed-time sliding mode fault-tolerant consensus control for second-order multi-agent system with actuator fault, 2022 41st Chinese Control Conference (CCC), Hefei, China, pp. 4153-4158.
[35] Wang, Y., Cheng, L., Hou, Z.-G., Tan, M. and Wang, M. (2014). Containment control of multi-agent systems in a noisy communication environment, Automatica 50(7): 1922-1928.
[36] Xu, C., Xu, H., Guan, Z.-H. and Ge, Y. (2022). Observer-based dynamic event-triggered semiglobal bipartite consensus of linear multi-agent systems with input saturation, IEEE Transactions on Cybernetics 53(5): 3139-3152.
[37] Xu, M., Yang, P. and Shu, Q. (2018). Consistent sliding mode fault tolerant control for second order multi-agent systems, 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, pp. 1-6.
[38] Yang, P., Hu, X., Wang, Z. and Zhang, Z. (2022). Sliding mode fault tolerant consensus control for multi-agent systems based on super-twisting observer, Journal of Systems Engineering and Electronics 33(6): 1309-1319.
[39] Yang, X.-R., Liu, G.-P., Zhang, Z. and Lyu, J. (2019). Consensus analysis and control for rectangular singular multi-agent systems, 2019 Chinese Automation Congress (CAC), Hangzhou, China, pp. 3632-3635.
[40] Yao, D., Li, H. and Shi, Y. (2022). Adaptive event-triggered sliding-mode control for consensus tracking of nonlinear multiagent systems with unknown perturbations, IEEE Transactions on Cybernetics 53(4): 2672-2684.
[41] Yorgancioğlu, F. and Redif, S. (2019). Fast nonsingular terminal decoupled sliding-mode control utilizing time-varying sliding surfaces, Turkish Journal of Electrical Engineering and Computer Sciences 27(3): 1922-1937.
[42] Yu, Z., Liu, C.,Wang, X. and Ren, X. (2023). Distributed output estimation error observer-based adaptive fault-tolerant consensus tracking control of multi-agent systems, International Journal of Adaptive Control and Signal Processing 37(4): 1030-1048.
[43] Yu, Z., Liu, Z., Zhang, Y., Qu, Y. and Su, C.-Y. (2019). Distributed finite-time fault-tolerant containment control for multiple unmanned aerial vehicles, IEEE Transactions on Neural Networks and Learning Systems 31(6): 2077-2091.
[44] Zhai, M., Sun, Q., Wang, R., Wang, B., Hu, J. and Zhang, H. (2023). Distributed multiagent-based event-driven fault-tolerant control of islanded microgrids, IEEE Transactions on Cybernetics 53(11): 7251-7262.
[45] Zhang, Q., Wang, J., Yang, Z. and Chen, Z. (2019). High gain feedback robust control for flocking of multi-agents system, Transactions of the Institute of Measurement and Control 41(13): 3769-3776.