Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected Hammerstein systems
International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 3, pp. 349-360.

Voir la notice de l'article provenant de la source Library of Science

An innovative control strategy addressing the complexities of discrete interconnected nonlinear Hammerstein subsystems is presented. The approach combines decentralized sliding mode control (DSMC) with an event-triggered mechanism (ETM) to efficiently manage complex systems characterized by discrete elements, nonlinear behavior, and interconnections. The event-triggered sliding mode control (ETSMC) framework offers a distributed control solution that utilizes the robustness and disturbance tolerance of sliding mode control while optimizing resource usage and network communication through an event-triggered mechanism. A comprehensive analysis of stability and robustness ensures that the proposed control strategy stabilizes the system and achieves its design objectives, even in the presence of uncertainties or disturbances. The effectiveness of the approach is demonstrated through two simulation examples.
Keywords: sliding mode control, event triggered mechanism, discrete interconnected system, Hammerstein model
Mots-clés : sterowanie ślizgowe, układ dyskretny, model Hammersteina
@article{IJAMCS_2024_34_3_a1,
     author = {Znidi, Aicha and Nouri, Ahmed Sa{\"\i}d},
     title = {Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected {Hammerstein} systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {349--360},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a1/}
}
TY  - JOUR
AU  - Znidi, Aicha
AU  - Nouri, Ahmed Saïd
TI  - Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected Hammerstein systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2024
SP  - 349
EP  - 360
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a1/
LA  - en
ID  - IJAMCS_2024_34_3_a1
ER  - 
%0 Journal Article
%A Znidi, Aicha
%A Nouri, Ahmed Saïd
%T Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected Hammerstein systems
%J International Journal of Applied Mathematics and Computer Science
%D 2024
%P 349-360
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a1/
%G en
%F IJAMCS_2024_34_3_a1
Znidi, Aicha; Nouri, Ahmed Saïd. Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected Hammerstein systems. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 3, pp. 349-360. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a1/

[1] Adamiak, K. and Bartoszewicz, A. (2021). Reference trajectory based quasi-sliding mode with event-triggered control, Energies 14(7236): 1-13.

[2] Bai, E.W. (2010). Block-oriented Nonlinear system Identification, Springer Verlag, Berlin/Heidelberg.

[3] Benyazid, Y. and Nouri, A.S. (2023). A discrete integral sliding manifold for a nonlinear system with time delay: An event-triggered scheme, Mathematics 11(2326): 1-19.

[4] Chen, S. and Harris, C.J. (2014). Complex-valued b-spline neural networks for modeling and inverting Hammerstein systems, IEEE Transactions on Neural Networks and Learning Systems 25(9): 1673-1685.

[5] Elloumi, M. and Kamoun, S. (2015). Optimal predictor and implicit self-tuning regulator for a class of Hammerstein large-scale systems, International Conference on Systems and Control, Sousse, Tunisia pp. 417-423.

[6] Elloumi, M. and Kamoun, S. (2016). Design of self-tuning regulator for large-scale interconnected Hammerstein systems, Journal of Control Science and Engineering 2016(13): 1-14, Article no. 6769714, DOI:10.1155/2016/6769714.

[7] Elloumi, M. and Kamoun, S. (2017). Adaptive control scheme for large-scale interconnected systems described by Hammerstein models, Asian Journal of Control 19(3): 1-14.

[8] Gong, S. and Zheng, M. (2023). Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus, International Journal of Applied Mathematics and Computer Science 33(3): 439-448, DOI: 10.34768/amcs-2023-0032.

[9] Hong, X. and Chen, S. (2012). Modelling and control of Hammerstein system using B-spline approximation and the inverse of de Boor algorithm, International Journal of Systems Science 43(10): 1976-1984.

[10] Hong, X. and Mitchell, R.J. (2007). Hammerstein model identification algorithm using Bezier-Bernstein approximation, IET Control Theory & Applications 1(4): 1149-1159.

[11] Kamoun, S. and Kamoun, M. (2016). A new decentralized implicit adaptive regulator for large-scale systems described by discrete-time state-space mathematical models, International Journal of Control Automatic Systems 14(3): 733-742.

[12] Labibi, B. (2005). Decentralized control via disturbance attenuation and eigenstructure assignment, IFAC Elsevier Publications 38(1): 63-68, DOI:10.3182/20050703-6-CZ-1902.01551.

[13] Menghua, C. (2023). Input-output finite-time sliding mode control of discrete time-varying systems under an adaptive event-triggered mechanism, IEEE Access 11: 3555-3563, DOI:10.1109/ACCESS.2023.3235009.

[14] Nagai, S. and Oya, H. (2014). Synthesis of decentralized variable gain robust controllers for large-scale interconnected systems with structured uncertainties, Journal of Control Science and Engineering 2014(1): 848465, DOI: 10.1155/2014/848465.

[15] Nan, J. and Bin, J. (2021). Decentralised state feedback stabilisation for nonlinear interconnected systems using sliding mode control, International Journal of Systems Science 53(5): 1017-1030.

[16] Ordaz, P., Romero-Trejo, H., Cuvas, C. and Sandre, O. (2024). Dynamic sliding mode control based on a full-order observer: Underactuated electro-mechanical system regulation, International Journal of Applied Mathematics and Computer Science 34(1): 29-43, DOI: 10.61822/amcs-2024-0003.

[17] Patel, A. and Purwar, S. (2023). Design of event trigger based multirate sliding mode load frequency controller for interconnected power system, ISA Transactions 137: 457-470, DOI:10.1016/j.isatra.2022.12.001.

[18] Rayouf, Z. and Braiek, N.B. (2019). A new Hammerstein model control strategy: feedback stabilization and stability analysis, International Journal of Dynamics and Control 7(4): 1453-1461.

[19] Thien, T.R. and Kim, Y. (2018). Decentralized formation flight via PID and integral sliding mode control, Aerospace Science and Technology 81: 322-332, DOI:10.1016/j.ast.2018.08.011.

[20] Vineet, P. and Utkal, M. (2022). Modeling and parametric identification of Hammerstein systems with time delay and asymmetric dead-zones using fractional differential equations, Mechanical Systems and Signal Processing B 167, Article no. 108568, DOI:10.1016/j.ymssp.2021.108568.

[21] Xiaojie, S. and Yong, D.S. (2017). Event-triggered sliding mode control for multi-area power systems, IEEE Transactions on Industrial Electronics 64(8): 6732-6741, DOI: 10.1109/TIE.2017.2677357.

[22] Yang, Y. and Yue, Q. (2021). Event-trigger-based recursive sliding-mode dynamic surface containment control with nonlinear gains for nonlinear multiagent systems, Information Sciences 560: 202-216, DOI:10.1016/j.ins.2021.01.072.

[23] Yiqun, B. and Yan, J. (2023). Parameter estimation of fractional-order Hammerstein state space system based on the extended Kalman filter, International Journal of Adaptive Control and Signal Processing 37(7): 1827-1846, DOI:10.1002/acs.3602.

[24] Yueheng, D. and Jiang, B. (2022). System structure based decentralized sliding mode output tracking control for nonlinear interconnected systems, International Journal of Robust and Nonlinear Control 33(3): 1-16, DOI:10.1002/rnc.6467.

[25] Yueheng, D. and Spurgeon, S.K. (2022a). Decentralised output tracking of interconnected systems with unknown interconnections using sliding mode control, International Journal of Systems Science 54(2): 283-294, DOI:10.1080/00207721.2022.2114115.

[26] Yueheng, D. and Spurgeon, S.K. (2022b). Sliding mode based decentralized tracking control of underactuated four-body systems, Asian Control Conference, Jeju, Korea, pp. 1765-1770, DOI:10.23919/ASCC56756.2022.9828154.

[27] Yufei, N. and Qiang, L. (2023). Event-triggered sliding mode control for networked linear systems, Journal of the Franklin Institute 360(3): 1978-1999.

[28] Znidi, A., Dehri, K. and Nouri, A.S. (2022). Discrete adaptive second order sliding mode control for uncertain Hammerstein nonlinear systems, 19th International Multi-Conference on Systems, Signals and Devices (SSD), Sétif, Algeria, pp. 1281-1287, DOI:10.1109/SSD54932.2022.9955951.