Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_3_a1, author = {Znidi, Aicha and Nouri, Ahmed Sa{\"\i}d}, title = {Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected {Hammerstein} systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {349--360}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a1/} }
TY - JOUR AU - Znidi, Aicha AU - Nouri, Ahmed Saïd TI - Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected Hammerstein systems JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 349 EP - 360 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a1/ LA - en ID - IJAMCS_2024_34_3_a1 ER -
%0 Journal Article %A Znidi, Aicha %A Nouri, Ahmed Saïd %T Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected Hammerstein systems %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 349-360 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a1/ %G en %F IJAMCS_2024_34_3_a1
Znidi, Aicha; Nouri, Ahmed Saïd. Decentralized sliding mode control using an event-triggered mechanism for discrete interconnected Hammerstein systems. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 3, pp. 349-360. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_3_a1/
[1] Adamiak, K. and Bartoszewicz, A. (2021). Reference trajectory based quasi-sliding mode with event-triggered control, Energies 14(7236): 1-13.
[2] Bai, E.W. (2010). Block-oriented Nonlinear system Identification, Springer Verlag, Berlin/Heidelberg.
[3] Benyazid, Y. and Nouri, A.S. (2023). A discrete integral sliding manifold for a nonlinear system with time delay: An event-triggered scheme, Mathematics 11(2326): 1-19.
[4] Chen, S. and Harris, C.J. (2014). Complex-valued b-spline neural networks for modeling and inverting Hammerstein systems, IEEE Transactions on Neural Networks and Learning Systems 25(9): 1673-1685.
[5] Elloumi, M. and Kamoun, S. (2015). Optimal predictor and implicit self-tuning regulator for a class of Hammerstein large-scale systems, International Conference on Systems and Control, Sousse, Tunisia pp. 417-423.
[6] Elloumi, M. and Kamoun, S. (2016). Design of self-tuning regulator for large-scale interconnected Hammerstein systems, Journal of Control Science and Engineering 2016(13): 1-14, Article no. 6769714, DOI:10.1155/2016/6769714.
[7] Elloumi, M. and Kamoun, S. (2017). Adaptive control scheme for large-scale interconnected systems described by Hammerstein models, Asian Journal of Control 19(3): 1-14.
[8] Gong, S. and Zheng, M. (2023). Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus, International Journal of Applied Mathematics and Computer Science 33(3): 439-448, DOI: 10.34768/amcs-2023-0032.
[9] Hong, X. and Chen, S. (2012). Modelling and control of Hammerstein system using B-spline approximation and the inverse of de Boor algorithm, International Journal of Systems Science 43(10): 1976-1984.
[10] Hong, X. and Mitchell, R.J. (2007). Hammerstein model identification algorithm using Bezier-Bernstein approximation, IET Control Theory & Applications 1(4): 1149-1159.
[11] Kamoun, S. and Kamoun, M. (2016). A new decentralized implicit adaptive regulator for large-scale systems described by discrete-time state-space mathematical models, International Journal of Control Automatic Systems 14(3): 733-742.
[12] Labibi, B. (2005). Decentralized control via disturbance attenuation and eigenstructure assignment, IFAC Elsevier Publications 38(1): 63-68, DOI:10.3182/20050703-6-CZ-1902.01551.
[13] Menghua, C. (2023). Input-output finite-time sliding mode control of discrete time-varying systems under an adaptive event-triggered mechanism, IEEE Access 11: 3555-3563, DOI:10.1109/ACCESS.2023.3235009.
[14] Nagai, S. and Oya, H. (2014). Synthesis of decentralized variable gain robust controllers for large-scale interconnected systems with structured uncertainties, Journal of Control Science and Engineering 2014(1): 848465, DOI: 10.1155/2014/848465.
[15] Nan, J. and Bin, J. (2021). Decentralised state feedback stabilisation for nonlinear interconnected systems using sliding mode control, International Journal of Systems Science 53(5): 1017-1030.
[16] Ordaz, P., Romero-Trejo, H., Cuvas, C. and Sandre, O. (2024). Dynamic sliding mode control based on a full-order observer: Underactuated electro-mechanical system regulation, International Journal of Applied Mathematics and Computer Science 34(1): 29-43, DOI: 10.61822/amcs-2024-0003.
[17] Patel, A. and Purwar, S. (2023). Design of event trigger based multirate sliding mode load frequency controller for interconnected power system, ISA Transactions 137: 457-470, DOI:10.1016/j.isatra.2022.12.001.
[18] Rayouf, Z. and Braiek, N.B. (2019). A new Hammerstein model control strategy: feedback stabilization and stability analysis, International Journal of Dynamics and Control 7(4): 1453-1461.
[19] Thien, T.R. and Kim, Y. (2018). Decentralized formation flight via PID and integral sliding mode control, Aerospace Science and Technology 81: 322-332, DOI:10.1016/j.ast.2018.08.011.
[20] Vineet, P. and Utkal, M. (2022). Modeling and parametric identification of Hammerstein systems with time delay and asymmetric dead-zones using fractional differential equations, Mechanical Systems and Signal Processing B 167, Article no. 108568, DOI:10.1016/j.ymssp.2021.108568.
[21] Xiaojie, S. and Yong, D.S. (2017). Event-triggered sliding mode control for multi-area power systems, IEEE Transactions on Industrial Electronics 64(8): 6732-6741, DOI: 10.1109/TIE.2017.2677357.
[22] Yang, Y. and Yue, Q. (2021). Event-trigger-based recursive sliding-mode dynamic surface containment control with nonlinear gains for nonlinear multiagent systems, Information Sciences 560: 202-216, DOI:10.1016/j.ins.2021.01.072.
[23] Yiqun, B. and Yan, J. (2023). Parameter estimation of fractional-order Hammerstein state space system based on the extended Kalman filter, International Journal of Adaptive Control and Signal Processing 37(7): 1827-1846, DOI:10.1002/acs.3602.
[24] Yueheng, D. and Jiang, B. (2022). System structure based decentralized sliding mode output tracking control for nonlinear interconnected systems, International Journal of Robust and Nonlinear Control 33(3): 1-16, DOI:10.1002/rnc.6467.
[25] Yueheng, D. and Spurgeon, S.K. (2022a). Decentralised output tracking of interconnected systems with unknown interconnections using sliding mode control, International Journal of Systems Science 54(2): 283-294, DOI:10.1080/00207721.2022.2114115.
[26] Yueheng, D. and Spurgeon, S.K. (2022b). Sliding mode based decentralized tracking control of underactuated four-body systems, Asian Control Conference, Jeju, Korea, pp. 1765-1770, DOI:10.23919/ASCC56756.2022.9828154.
[27] Yufei, N. and Qiang, L. (2023). Event-triggered sliding mode control for networked linear systems, Journal of the Franklin Institute 360(3): 1978-1999.
[28] Znidi, A., Dehri, K. and Nouri, A.S. (2022). Discrete adaptive second order sliding mode control for uncertain Hammerstein nonlinear systems, 19th International Multi-Conference on Systems, Signals and Devices (SSD), Sétif, Algeria, pp. 1281-1287, DOI:10.1109/SSD54932.2022.9955951.