Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_2_a1, author = {L\'opez-Estrada, Francisco-Ronay and Darias, Helen and Puig, Vicen\c{c} and Valencia-Palomo, Guillermo and Dom{\'\i}nguez-Zenteno, Joaqu{\'\i}n and Guerrero-S\'anchez, Mar{\'\i}a-Eusebia}, title = {Cooperative convex control of multiagent systems applied to differential drive robots}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {199--210}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a1/} }
TY - JOUR AU - López-Estrada, Francisco-Ronay AU - Darias, Helen AU - Puig, Vicenç AU - Valencia-Palomo, Guillermo AU - Domínguez-Zenteno, Joaquín AU - Guerrero-Sánchez, María-Eusebia TI - Cooperative convex control of multiagent systems applied to differential drive robots JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 199 EP - 210 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a1/ LA - en ID - IJAMCS_2024_34_2_a1 ER -
%0 Journal Article %A López-Estrada, Francisco-Ronay %A Darias, Helen %A Puig, Vicenç %A Valencia-Palomo, Guillermo %A Domínguez-Zenteno, Joaquín %A Guerrero-Sánchez, María-Eusebia %T Cooperative convex control of multiagent systems applied to differential drive robots %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 199-210 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a1/ %G en %F IJAMCS_2024_34_2_a1
López-Estrada, Francisco-Ronay; Darias, Helen; Puig, Vicenç; Valencia-Palomo, Guillermo; Domínguez-Zenteno, Joaquín; Guerrero-Sánchez, María-Eusebia. Cooperative convex control of multiagent systems applied to differential drive robots. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 2, pp. 199-210. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a1/
[1] Abdulwahhab, O.W. and Abbas, N.H. (2018). Design and stability analysis of a fractional order state feedback controller for trajectory tracking of a differential drive robot, International Journal of Control, Automation and Systems 16(6): 2790-2800.
[2] Ahmed, I., Rehan, M., Iqbal, N. and Ahn, C.K. (2023). A novel event-triggered consensus approach for generic linear multi-agents under heterogeneous sector-restricted input nonlinearities, IEEE Transactions on Network Science and Engineering 10(3): 1648-1658.
[3] Ahsan Razaq, M., Rehan, M., Tahir, F. and Chadli, M. (2020). H∞ leader-based consensus of non-linear multi-agents over switching graphs and disturbances using multiple Lyapunov functions, IET Control Theory & Applications 14(20): 3395-3405.
[4] Ai, X. and Wang, L. (2021). Distributed fixed-time event-triggered consensus of linear multi-agent systems with input delay, International Journal of Robust and Nonlinear Control 31(7): 2526-2545.
[5] Amirkhani, A. and Barshooi, A.H. (2022). Consensus in multi-agent systems: A review, Artificial Intelligence Review 55(5): 3897-3935.
[6] Attallah, A. and Werner, H. (2020). Information flow in formation control for nonholonomic agents modeled as LPV systems, 2020 European Control Conference (ECC), St. Petersurg, Russia, pp. 459-464.
[7] Bernal, M., Estrada, V. and Márquez, R. (2019). Diseno e implementación de sistemas de control basados en estructuras convexas y desigualdades matriciales lineales, Pearson, Mexico City.
[8] Blažič, S. and Bernal, M. (2011). Trajectory tracking for nonholonomic mobile robots based on extended models, IFAC Proceedings Volumes 44(1): 5938-5943.
[9] Corke, P. (2017). Robotics, Vision and Control: Fundamental Algorithms in MATLAB®, 2nd Edn, Springer, Cham.
[10] Dian, S., Han, J., Guo, R., Li, S., Zhao, T., Hu, Y. and Wu, Q. (2019). Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots, International Journal of Fuzzy Systems 21(7): 2032-2042.
[11] Gong, S., Zheng, M., Hu, J. and Zhang, A. (2023). Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus, International Journal of Applied Mathematics and Computer Science 33(3): 439-448, DOI: 10.34768/amcs-2023-0032.
[12] González-Sierra, J., Aranda-Bricaire, E., Rodríguez-Cortés, H. and Santiaguillo-Salinas, J. (2021). Formation tracking for a group of differential-drive mobile robots using an attitude observer, International Journal of Control 94(1): 89-102.
[13] Lendek, Z., Guerra, T.M., Babuska, R. and De Schutter, B. (2011). Stability analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models, Springer, Berlin.
[14] Lewis, F.L., Zhang, H., Hengster-Movric, K. and Das, A. (2013). Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer, London.
[15] Liu, G., Wu, S., Zhu, L., Wang, J. and Lv, Q. (2022). Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction, International Journal of Applied Mathematics and Computer Science 32(1): 11-21, DOI: 10.34768/amcs-2022-0002.
[16] Liu, Y., Li, T., Shan, Q., Yu, R., Wu, Y. and Chen, C.P. (2020). Online optimal consensus control of unknown linear multi-agent systems via time-based adaptive dynamic programming, Neurocomputing 404(1): 137-144.
[17] Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in Matlab, IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 284-289.
[18] Manoharan, S.H. and Chiu, W.-Y. (2019). Consensus based formation control of automated guided vehicles using dynamic destination approach, 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hiroshima, Japan, pp. 902-907.
[19] Miao, Z., Liu, Y.-H., Wang, Y., Yi, G. and Fierro, R. (2018). Distributed estimation and control for leader-following formations of nonholonomic mobile robots, IEEE Transactions on Automation Science and Engineering 15(4): 1946-1954.
[20] Moradi, M., Safarinejadian, B. and Shafiei, M. (2022). H∞ smooth switching distributed consensus controller for uncertain time-delay switched LPV multi-agent systems, Transactions of the Institute of Measurement and Control 44(12): 2454-2471.
[21] Moreno-Valenzuela, J., Montoya-Villegas, L.G., Pérez-Alcocer, R. and Rascón, R. (2022). Saturated proportional-integral-type control of UWMRS with experimental evaluations, International Journal of Control, Automation and Systems 20(1): 184-197.
[22] Nuno, E., Loria, A., Hernández, T., Maghenem, M. and Panteley, E. (2020). Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays, Automatica 120(1): 109114.
[23] Ollervides-Vazquez, E.J., Rojo-Rodriguez, E.G., Garcia-Salazar, O., Amezquita-Brooks, L., Castillo, P. and Santibañez, V. (2020). A sectorial fuzzy consensus algorithm for the formation flight of multiple quadrotor unmanned aerial vehicles, International Journal of Micro Air Vehicles 12: 1-24.
[24] Razaq, M.A., Rehan, M., Hussain, M., Ahmed, S. and Hong, K. (2023). Observer-based leader-following consensus of one-sided Lipschitz multi-agent systems over input saturation and directed graphs, Asian Journal of Control 25(5): 4096-4112.
[25] Rehan, M., Ahn, C.K. and Chadli, M. (2019). Consensus of one-sided Lipschitz multi-agents under input saturation, IEEE Transactions on Circuits and Systems II: Express Briefs 67(4): 745-749.
[26] Saadabadi, H. and Werner, H. (2021). Event-triggered [...] optimal formation control for agents modeled as LPV systems, IEEE Conference on Decision and Control (CDC), Austin, USA, pp. 1256-1262.
[27] Sturm, J.F. (1999). Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones, Optimization Methods and Software 11(1-4): 625-653.
[28] Subiantoro, A., Hadi, M.S.A. and Muis, A. (2020). Distributed linear parameter varying model predictive controller with event-triggered mechanism for nonholonomic mobile robot, International Conference on Advances in the Emerging Computing Technologies (AECT), Al Madinah Al Munawwarah, Saudi Arabia, pp. 1-6.
[29] Vafamand, N. and Shasadeghi, M. (2017). More relaxed non-quadratic stabilization conditions using TS open loop system and control law properties, Asian Journal of Control 19(2): 467-481.
[30] Wu, X., Wang, S. and Xing, M. (2018). Observer-based leader-following formation control for multi-robot with obstacle avoidance, IEEE Access 7(1): 14791-14798.
[31] Yao, P., Wei, Y. and Zhao, Z. (2022). Null-space-based modulated reference trajectory generator for multi-robots formation in obstacle environment, ISA Transactions 123(1): 168-178.
[32] Zakwan, M. and Ahmed, S. (2019). Distributed output feedback control of decomposable LPV systems with delay: Application to multi-agent nonholonomic systems, European Control Conference (ECC), Naples, Italy, pp. 2899-2903.
[33] Zhang, J., Zhang, H., Sun, S. and Gao, Z. (2021). Leader-follower consensus control for linear multi-agent systems by fully distributed edge-event-triggered adaptive strategies, Information Sciences 555(1): 314-338.
[34] Zhang, S., Zhang, T., Guo, H. and Zhang, F. (2022). General attitude cooperative control of satellite formation by set stabilization, Acta Astronautica 191(1): 125-133.
[35] Zhu, F. and Tan, C. (2023). Consensus control of linear parameter-varying multi-agent systems with unknown inputs, Sensors 23(11): 5125.