Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_2_a0, author = {Aguilar-Ibanez, Carlos and Suarez-Castanon, Miguel S. and Saldivar, Belem and Jimenez-Lizarraga, Manuel A. and de Jesus Rubio, Jose and Mendoza-Mendoza, Julio}, title = {Algebraic active disturbance rejection to control a generalized uncertain second-order flat system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {185--198}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a0/} }
TY - JOUR AU - Aguilar-Ibanez, Carlos AU - Suarez-Castanon, Miguel S. AU - Saldivar, Belem AU - Jimenez-Lizarraga, Manuel A. AU - de Jesus Rubio, Jose AU - Mendoza-Mendoza, Julio TI - Algebraic active disturbance rejection to control a generalized uncertain second-order flat system JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 185 EP - 198 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a0/ LA - en ID - IJAMCS_2024_34_2_a0 ER -
%0 Journal Article %A Aguilar-Ibanez, Carlos %A Suarez-Castanon, Miguel S. %A Saldivar, Belem %A Jimenez-Lizarraga, Manuel A. %A de Jesus Rubio, Jose %A Mendoza-Mendoza, Julio %T Algebraic active disturbance rejection to control a generalized uncertain second-order flat system %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 185-198 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a0/ %G en %F IJAMCS_2024_34_2_a0
Aguilar-Ibanez, Carlos; Suarez-Castanon, Miguel S.; Saldivar, Belem; Jimenez-Lizarraga, Manuel A.; de Jesus Rubio, Jose; Mendoza-Mendoza, Julio. Algebraic active disturbance rejection to control a generalized uncertain second-order flat system. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 2, pp. 185-198. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_2_a0/
[1] Aguilar-Ibanez, C., Sira-Ramirez, H., Acosta, J.Á . and Suarez-Castanon, M.S. (2021). An algebraic version of the active disturbance rejection control for second-order flat systems, International Journal of Control 94(1): 215-222.
[2] Astolfi, A., Karagiannis, D. and Ortega, R. (2007). Nonlinear and Adaptive Control with Applications, Springer, Luxembourg.
[3] Åström, K.J. and Eykhoff, P. (1971). System identification - A survey, Automatica 7(2): 123-162.
[4] Åström, K.J. and Wittenmark, B. (1971). Problems of identification and control, Journal of Mathematical Analysis and Applications 34(1): 90-113.
[5] Azhmyakov, V., Poznyak, A. and Gonzalez, O. (2013). On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach, Journal of Industrial and Management Optimization 9(3): 579-593.
[6] Bartolini, G., Fridman, L., Pisano, A. and Usai, E. (2008). Modern Sliding Mode Control Theory: New Perspectives and Applications, Springer, New York.
[7] Boltyansky, V. (1999). Robust maximum principle in minimax control, International Journal of Control 72(4): 305-314.
[8] Chen, Z., Zheng, Q. and Gao, Z. (2007). Active disturbance rejection control of chemical processes, IEEE International Conference on Control Applications, CCA 2007, Singapore, pp. 855-861.
[9] Cheney, E.W. and Kincaid, D.R. (2012). Numerical Mathematics and Computing, Cengage Learning, Boston.
[10] Cortés-Romero, J., Jimenez-Triana, A., Coral-Enriquez, H. and Sira-Ramírez, H. (2017). Algebraic estimation and active disturbance rejection in the control of flat systems, Control Engineering Practice 61: 173-182.
[11] Davila, J. and Poznyak, A. (2011). Dynamic sliding mode control design using attracting ellipsoid method, Automatica 47(7): 1467-1472.
[12] de Jesús Rubio, J. (2016). Structure control for the disturbance rejection in two electromechanical processes, Journal of the Franklin Institute 353(14): 3610-3631.
[13] de Jesús Rubio, J., Ochoa, G., Balcazar, R. and Pacheco, J. (2015). Uniform stable observer for the disturbance estimation in two renewable energy systems, ISA Transactions 58: 155-164.
[14] Ding, S., Park, J.H. and Chen, C.-C. (2020). Second-order sliding mode controller design with output constraint, Automatica 112: 108704.
[15] Dullerud, G.E. and Paganini, F. (2013). A Course in Robust Control Theory: A Convex Approach, Springer Science & Business Media, Luxembourg.
[16] Edwards, C., Colet, E.F., Fridman, L., Colet, E.F. and Fridman, L.M. (2006). Advances in Variable Structure and Sliding Mode Control, Springer, New York.
[17] Ferreira, A., Bejarano, F.J. and Fridman, L.M. (2010). Robust control with exact uncertainties compensation: With or without chattering?, IEEE Transactions on Control Systems Technology 19(5): 969-975.
[18] Fliess, M. and Join, C. (2009). Model-free control and intelligent PID controllers: Towards a possible trivialization of nonlinear control?, 15th IFAC Symposium on System Identification (SYSID 2009), Saint-Malo, France.
[19] Fliess, M. and Join, C. (2013). Model-free control, International Journal of Control 86(12): 2228-2252.
[20] Fliess,M. and Sira-Ramírez, H. (2003). An algebraic framework for linear identification, ESAIM: Control, Optimisation and Calculus of Variations 9: 151-168.
[21] Fliess, M. and Sira-Ramirez, H. (2008). Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques, in H. Garnier and L. Wang (Eds), Identification of Continuous-Time Models from Sampled Data, Springer, London, pp. 363-391.
[22] Freidovich, L.B. and Khalil, H.K. (2008). Performance recovery of feedback-linearization-based designs, IEEE Transactions on Automatic Control 53(10): 2324-2334.
[23] Gao, Z., Huang, Y. and Han, J. (2001). An alternative paradigm for control system design, Proceedings of the 40th IEEE Conference on Decision and Control, 2001, Orlando, USA, pp. 4578-4585.
[24] Gliklikh, Y.E. (2006). Necessary and sufficient conditions for global-in-time existence of solutions of ordinary, stochastic, and parabolic differential equations, Abstract and Applied Analysis 2006, Article ID: 039786, DOI: 10.1155/AAA/2006/39786.
[25] Guo, B.-Z. and Zhao, Z.-l. (2011). On the convergence of an extended state observer for nonlinear systems with uncertainty, Systems & Control Letters 60(6): 420-430.
[26] Guo, B.-Z. and Zhao, Z.-L. (2013). On convergence of the nonlinear active disturbance rejection control for MIMO systems, SIAM Journal on Control and Optimization 51(2): 1727-1757.
[27] Han, J. (2009). From PID to active disturbance rejection control, IEEE Transactions on Industrial Electronics 56(3): 900-906.
[28] Kapitaniak, T. (2000). Chaos for Engineers: Theory, Applications, and Control, Springer, Heidelberg.
[29] Khalil, H.K. (2017). High-Gain Observers in Nonlinear Feedback Control, SIAM, Philadelphia.
[30] Khalil, H.K. and Praly, L. (2014). High-gain observers in nonlinear feedback control, International Journal of Robust and Nonlinear Control 24(6): 993-1015.
[31] Krstic,M., Kokotovic, P.V. and Kanellakopoulos, I. (1995). Nonlinear and Adaptive Control Design, Wiley, Hoboken.
[32] Lafont, F., Balmat, J.-F., Pessel, N. and Fliess, M. (2015). A model-free control strategy for an experimental greenhouse with an application to fault accommodation, Computers and Electronics in Agriculture 110: 139-149.
[33] Liu, K.-Z. and Yao, Y. (2016). Robust Control: Theory and Applications, Wiley, Hoboken.
[34] Moreno-Valenzuela, J. (2007). Velocity field control of robot manipulators by using only position measurements, Journal of the Franklin Institute 344(8): 1021-1038.
[35] Moreno-Valenzuela, J. (2019). A class of proportional-integral with anti-windup controllers for DC-DC buck power converters with saturating input, IEEE Transactions on Circuits and Systems II: Express Briefs 67(1): 157-161.
[36] Moreno-Valenzuela, J., Santibáñnez, V. and Campa, R. (2008). On output feedback tracking control of robot manipulators with bounded torque input, International Journal of Control, Automation, and Systems 6(1): 76-85.
[37] Ordaz, P., Alazki, H., Sánchez, B. and Ordaz-Oliver, M. (2023). On the finite time stabilization via robust control for uncertain disturbed systems, International Journal of Applied Mathematics and Computer Science 33(1): 71-82, DOI: 10.34768/amcs-2023-0006.
[38] Parker, T.S. and Chua, L. (2012). Practical Numerical Algorithms for Chaotic Systems, Springer, New York.
[39] Petersen, I.R. and Tempo, R. (2014). Robust control of uncertain systems: Classical results and recent developments, Automatica 50(5): 1315-1335.
[40] Poznyak, A., Duncan, T., Pasik-Duncan, B. and Boltyanski, V. (2002). Robust maximum principle for multi-model LQ-problem, International Journal of Control 75(15): 1170-1177.
[41] Poznyak, A., Polyakov, A. and Azhmyakov, V. (2014). Attractive Ellipsoids in Robust Control, Springer, Basel.
[42] Ramírez-Neria, M., Madonski, R., Luviano-Juárez, A., Gao, Z. and Sira-Ramírez, H. (2020). Design of ADRC for second-order mechanical systems without time-derivatives in the tracking controller, 2020 American Control Conference (ACC), Denver, USA, pp. 2623-2628.
[43] Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R. and Luviano-Juarez, A. (2014). Linear active disturbance rejection control of underactuated systems: The case of the Furuta pendulum, ISA Transactions 53(4): 920-928.
[44] Reyes, F. and Kelly, R. (1997). Experimental evaluation of identification schemes on a direct drive robot, Robotica 15(5): 563-571.
[45] Romero, J.C., Juárez, A.L., Sira-Ramírez, H. and Rodríguez, C.G. (2014). Algebraic Identification and Estimation Methods in Feedback Control Systems, Wiley, Hoboken.
[46] Rubio, J.D.J., Ochoa, G., Mujica-Vargas, D., Garcia, E., Balcazar, R., Elias, I., Cruz, D.R., Juarez, C.F., Aguilar, A. and Novoa, J.F. (2019). Structure regulator for the perturbations attenuation in a quadrotor, IEEE Access 7: 138244-138252.
[47] Sanchez, T. and Moreno, J.A. (2021). Homogeneous output-feedback control with disturbance-observer for a class of nonlinear systems, International Journal of Robust and Nonlinear Control 31(9): 3686-3707.
[48] Shtessel, Y., Edwards, C., Fridman, L. and Levant, A. (2014). Sliding Mode Control and Observation, Springer, New York.
[49] Sira-Ramírez, H., Castro-Linares, R. and Puriel-Gil, G. (2014). An active disturbance rejection approach to leader-follower controlled formation, Asian Journal of Control 16(2): 382-395.
[50] Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M. and Zurita-Bustamante, E.W. (2018). Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach, Butterworth-Heinemann, Oxford.
[51] Tian, G. and Gao, Z. (2007). Frequency response analysis of active disturbance rejection based control system, IEEE International Conference on Control Applications, CCA 2007, Singapore, pp. 1595-1599.
[52] Utkin, V., Guldner, J. and Shi, J. (2017). Sliding Mode Control in Electro-Mechanical Systems, CRC Press, Boca Ratton.
[53] Zhao, S. and Gao, Z. (2013). An active disturbance rejection based approach to vibration suppression in two-inertia systems, Asian Journal of Control 15(2): 350-362.
[54] Zhou, W., Shao, S. and Gao, Z. (2009). A stability study of the active disturbance rejection control problem by a singular perturbation approach, Applied Mathematical Sciences 3(10): 491-508.