Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_1_a7, author = {Zhao, Jing and Liu, Dayong and Meng, Lingshuai}, title = {Remaining useful life prediction of a lithium-ion battery based on a temporal convolutional network with data extension}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {105--117}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a7/} }
TY - JOUR AU - Zhao, Jing AU - Liu, Dayong AU - Meng, Lingshuai TI - Remaining useful life prediction of a lithium-ion battery based on a temporal convolutional network with data extension JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 105 EP - 117 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a7/ LA - en ID - IJAMCS_2024_34_1_a7 ER -
%0 Journal Article %A Zhao, Jing %A Liu, Dayong %A Meng, Lingshuai %T Remaining useful life prediction of a lithium-ion battery based on a temporal convolutional network with data extension %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 105-117 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a7/ %G en %F IJAMCS_2024_34_1_a7
Zhao, Jing; Liu, Dayong; Meng, Lingshuai. Remaining useful life prediction of a lithium-ion battery based on a temporal convolutional network with data extension. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a7/
[1] Bai, S., Kolter, J.Z. and Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, arXiv 1803.01271.
[2] Cao, J., Li, Z. and Li, J. (2019). Financial time series forecasting model based on CEEMDAN and LSTM, Physica A: Statistical Mechanics and Its Applications 519: 127-139.
[3] Cao, Y., Ding, Y., Jia, M. and Tian, R. (2021). A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings, Reliability Engineering & System Safety 215: 107813.
[4] Chen, D., Hong, W. and Zhou, X. (2022). Transformer network for remaining useful life prediction of lithium-ion batteries, IEEE Access 10: 19621-19628.
[5] He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770-778.
[6] Hong, S., Yue, T. and Liu, H. (2022). Vehicle energy system active defense: A health assessment of lithium-ion batteries, International Journal of Intelligent Systems 37(12): 10081-10099.
[7] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C. and Liu, H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 454(1971): 903-995.
[8] Li, L., Li, Y., Mao, R., Li, L., Hua, W. and Zhang, J. (2023). Remaining useful life prediction for lithium-ion batteries with a hybrid model based on TCN-GRU-DNN and dual attention mechanism, IEEE Transactions on Transportation Electrification 9(3): 4726-4740.
[9] Li, X., Zhang, L., Wang, Z. and Dong, P. (2019). Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks, Journal of Energy Storage 21: 510-518.
[10] Park, K., Choi, Y., Choi, W.J., Ryu, H.-Y. and Kim, H. (2020). LSTM-based battery remaining useful life prediction with multi-channel charging profiles, IEEE Access 8: 20786-20798.
[11] Pecht, M. (2017). Battery data set: CALCE, Battery Research Data, CALCE Battery Research Group, University of Maryland, College Park, https://calce.umd.edu/data#CS2.
[12] Ren, L., Zhao, L., Hong, S., Zhao, S., Wang, H. and Zhang, L. (2018). Remaining useful life prediction for lithium-ion battery: A deep learning approach, IEEE Access 6: 50587-50598.
[13] Saha, B. and Goebel, K. (2007). Battery data set: NASA, NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, https://www.nasa.gov/intelligent-systems-division/#battery.
[14] Salimans, T. and Kingma, D.P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks, Advances in Neural Information Processing Systems 29(9): 901-909.
[15] Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849-862, DOI: 10.1515/amcs-2015-0061.
[16] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting, Journal of Machine Learning Research 15(1): 1929-1958.
[17] Torres, M.E., Colominas, M.A., Schlotthauer, G. and Flandrin, P. (2011). A complete ensemble empirical mode decomposition with adaptive noise, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, pp. 4144-4147.
[18] Wu, Z. and Huang, N.E. (2009). Ensemble empirical mode decomposition: A noise-assisted data analysis method, Advances in Adaptive Data Analysis 1(01): 1-41.
[19] Ye, R. and Dai, Q. (2018). A novel transfer learning framework for time series forecasting, Knowledge-Based Systems 156: 74-99.
[20] Zhang, Y., Xiong, R., He, H. and Pecht, M.G. (2018). Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries, IEEE Transactions on Vehicular Technology 67(7): 5695-5705.
[21] Zhou, B., Cheng, C., Ma, G. and Zhang, Y. (2020). Remaining useful life prediction of lithium-ion battery based on attention mechanism with positional encoding, IOP Conference Series: Materials Science and Engineering, 895: 012006.
[22] Zhou, Y. and Huang, M. (2016). Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model, Microelectronics Reliability 65: 265-273.