Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_1_a6, author = {Baldonedo, Jacobo and Fern\'andez, Jos\'e R. and Quintanilla, Ram\'on}, title = {Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {93--103}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a6/} }
TY - JOUR AU - Baldonedo, Jacobo AU - Fernández, José R. AU - Quintanilla, Ramón TI - Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 93 EP - 103 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a6/ LA - en ID - IJAMCS_2024_34_1_a6 ER -
%0 Journal Article %A Baldonedo, Jacobo %A Fernández, José R. %A Quintanilla, Ramón %T Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 93-103 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a6/ %G en %F IJAMCS_2024_34_1_a6
Baldonedo, Jacobo; Fernández, José R.; Quintanilla, Ramón. Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a6/
[1] Abo-Dahab, S.M. (2020). A two-temperature generalized magneto-thermoelastic formulation for a rotating medium with thermal shock under hydrostatic initial stress, Continuum Mechanics and Thermodynamics 32(3): 883-900.
[2] Ali, G. and Romano, V. (2017). Existence and uniqueness for a two-temperature energy-transport model for semiconductors, Journal of Mathematical Analysis and Applications 449(2): 1248-1264.
[3] Barabasz, B., Gajda-Zagórska, E., Migórski, S., Paszyński, M., Schaefer, R. and Smołka, M. (2014). A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science 24(4): 865-886, DOI: 10.2478/amcs-2014-0064.
[4] Bazarra, N., Campo, M. and Fernández, J.R. (2019). A thermoelastic problem with diffusion, microtemperatures, and microconcentrations, Acta Mechanica 230: 31-48.
[5] Bazarra, N., Fernández, J.R., Magaña, A. and Quintanilla, R. (2020). Numerical analysis of a dual-phase-lag model involving two temperatures, Mathematical Methods in the Applied Sciences 43(5): 2759-2771.
[6] Campo, M., Copetti, M.I., Fernández, J.R. and Quintanilla, R. (2022). On existence and numerical approximation in phase-lag thermoelasticity with two temperatures, Discrete and Continuous Dynamical Systems B 27(4): 2221-2247.
[7] Campo, M., Fernández, J., Kuttler, K., Shillor, M. and Viano, J. (2006). Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Computer Methods in Applied Mechanics and Engineering 196(1): 476-488.
[8] Chen, P. and Gurtin, M.E. (1968). On a theory of heat involving two temperatures, Zeitschrift fur angewandte Mathematik und Physik 19: 614-627.
[9] Chen, P., Gurtin, M.E. and Williams, W. (1969). On the thermodynamics of non-simple materials with two temperatures, Zeitschrift fur angewandte Mathematik und Physik 20: 107-112.
[10] Chen, P., Gurtin, M.E. and Williams, W.O. (1968). A note on non-simple heat conduction, Zeitschrift fur angewandte Mathematik und Physik 19: 969-970.
[11] Ciarlet, P. (1993). Basic error estimates for elliptic problems, in P.G. Ciarlet and J. Lions (Eds), Handbook of Numerical Analysis, Springer-Verlag, Berlin, pp. 17-351.
[12] Clement, P. (1975). Approximation by finite element functions using local regularization, RAIRO Mathematical Modeling and Numerical Analysis 9(R2): 77-84.
[13] Cowin, S. (1985). The viscoelastic behavior of linear elastic materials with voids, Journal of Elasticity 15: 185-191.
[14] Cowin, S. and Nunziato, J. (1983). Linear elastic materials with voids, Journal of Elasticity 13: 125-147.
[15] D’Apice, C., Zampoli, V. and Chiriţă, S. (2020). On the wave propagation in the thermoelasticity theory with two temperatures, Journal of Elasticity 140(2): 257-272.
[16] Feng, B. and Apalara, T.A. (2019). Optimal decay for a porous elasticity system with memory, Journal of Mathematical Analysis and Applications 470(2): 1108-1128.
[17] Feng, B. and Yin, M. (2019). Decay of solutions for a one-dimensional porous elasticity system with memory: The case of non-equal wave speeds, Mathematics and Mechanics of Solids 24(8): 2361-2373.
[18] Fernández, J.R. and Quintanilla, R. (2021a). Two-temperatures thermo-porous-elasticity with microtemperatures, Applied Mathematical Letters 111: 106628.
[19] Fernández, J.R. and Quintanilla, R. (2021b). Uniqueness and exponential instability in a new two-temperature thermoelastic theory, AIMS Mathematics 6(6): 5440-5451.
[20] Grot, R. (1969). Thermodynamics of a continuum with microstructure, International Journal of Engineering Science 7(8): 801-814.
[21] Gruais, I. and Poliševski, D. (2017). Model of two-temperature convective transfer in porous media, Zeitschrift fur angewandte Mathematik und Physik 68(6): 143.
[22] Ieşan, D. (2007). Thermoelasticity of bodies with microstructure and microtemperatures, International Journal of Solids and Structures 44(25-26): 8648-8653.
[23] Ieşan, D. and Quintanilla, R. (2000). On a theory of thermoelasticity with microtemperatures, Journal of Thermal Stresses 23(3): 195-215.
[24] Kumar, K., Prasad, R. and Kumar, R. (2020). Thermoelastic interactions on hyperbolic two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity, European Journal of Mechanics A: Solids 82: 104007.
[25] Leseduarte, M., Magaña, A.M. and Quintanilla, R. (2010). On the time decay of solutions in porous-thermo-elasticity of type II, Discrete and Continuous Dynamical Systems B 13(2): 375-391.
[26] Liu, Z. and Zheng, S. (1999). Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton.
[27] Magaña, A., Miranville, A. and Quintanilla, R. (2020). Exponential decay of solutions in type II thermo-porous-elasticity with quasi-static microvoids, Journal of Mathematical Analysis and Applications 492(2): 124504.
[28] Magaña, A. and Quintanilla, R. (2018). Exponential stability in type III thermoelasticity with microtemperatures, Zeitschrift fur angewandte Mathematik und Physik 69(5): 129.
[29] Magaña, A. and Quintanilla, R. (2021). Decay of quasi-static porous-thermo-elastic waves, Zeitschrift fur angewandte Mathematik und Physik 72: 125.
[30] Makki, A., Miranville, A. and Sadaka, G. (2019). On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials, Discrete and Continuous Dynamical Systems Series B 24(3): 1341-1365.
[31] Makki, A., Miranville, A. and Sadaka, G. (2021). On the conserved Caginalp phase-field system with logarithmic potentials based on the Maxwell-Cattaneo law with two temperatures, Applied Mathematics and Optimations 84(2): 1285-1316.
[32] Miranville, A. and Quintanilla, R. (2016). On the Caginalp phase-field systems with two temperatures and the Maxwell-Cattaneo law, Mathematical Methods in the Applied Sciences 39(15): 4385-4397.
[33] Miranville, A. and Quintanilla, R. (2019). Exponential decay in one-dimensional type III thermoelasticity with voids, Applied Mathematical Letters 94: 30-37.
[34] Miranville, A. and Quintanilla, R. (2020). Exponential decay in one-dimensional type II thermoviscoelasticity with voids, Journal of Computational and Applied Mathematics 368: 112573.
[35] Mukhopadhyay, S., Picard, R., Trostorff, S. and Waurick, M. (2017). A note on a two-temperature model in linear thermoelasticity, Mathematics and Mechanics of Solids 22(5): 905-918.
[36] Nunziato, J. and Cowin, S.C. (1979). A nonlinear theory of elastic materials with voids, Archive for Rational Mechanics and Analysis 72: 175-201.
[37] Pamplona, P., Muñoz-Rivera, J.M. and Quintanilla, R. (2011). On the decay of solutions for porous-elastic systems with history, Journal of Mathematical Analysis and Applications 379(2): 682-705.
[38] Passarella, F., Tibullo, V. and Viccione, G. (2017). Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures, Meccanica 52: 3033-3041.
[39] Riha, P. (1975). On the theory of heat-conducting micropolar fluids with microtemperatures, Acta Mechanica 23: 1-8.
[40] Riha, P. (1976). On the microcontinuum model of heat conduction in materials with inner structure, International Journal of Engineering Science 14(6): 529-535.
[41] Sarkar, N. and Mondal, S. (2020). Thermoelastic plane waves under the modified Green-Lindsay model with two-temperature formulation, Zeitschrift fur Angewandte Mathematik und Mechanik 100(11): e201900267.
[42] Sellitto, A., Carlomagno, I. and Domenico, M.D. (2021). Nonlocal and nonlinear effects in hyperbolic heat transfer in a two-temperature model, Zeitschrift fur Angewandte Mathematik und Mechanik 72(1): 7.
[43] Warren, W. and Chen, P.J. (1973). Wave propagation in two temperatures theory of thermoelaticity, Acta Mechanica 16: 83-117.
[44] Youssef, H. and Elsibai, K.A. (2015). On the theory of two-temperature thermoelasticity without energy dissipation of Green-Naghdi model, Applicable Analysis 94(10): 1997-2010.