Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures
International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 1, pp. 93-103.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider, from a numerical point of view, a two-temperature poro-thermoelastic problem. The model is written as a coupled linear system of hyperbolic and elliptic partial differential equations. An existence result is proved and energy decay properties are recalled. Then we introduce a fully discrete approximation by using the finite element method and the implicit Euler scheme. Some a priori error estimates are obtained, from which the linear convergence of the approximation is deduced under an appropriate additional regularity. Finally, some numerical simulations are performed to demonstrate the accuracy of the approximation, the decay of the discrete energy and the behaviour of the solution depending on a constitutive parameter.
Keywords: two temperatures, porothermoelasticity, microtemperature, finite element, priori error estimates
Mots-clés : porotermoelastyczność, mikrotemperatura, element skończony, oszacowanie błędu
@article{IJAMCS_2024_34_1_a6,
     author = {Baldonedo, Jacobo and Fern\'andez, Jos\'e R. and Quintanilla, Ram\'on},
     title = {Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a6/}
}
TY  - JOUR
AU  - Baldonedo, Jacobo
AU  - Fernández, José R.
AU  - Quintanilla, Ramón
TI  - Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2024
SP  - 93
EP  - 103
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a6/
LA  - en
ID  - IJAMCS_2024_34_1_a6
ER  - 
%0 Journal Article
%A Baldonedo, Jacobo
%A Fernández, José R.
%A Quintanilla, Ramón
%T Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures
%J International Journal of Applied Mathematics and Computer Science
%D 2024
%P 93-103
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a6/
%G en
%F IJAMCS_2024_34_1_a6
Baldonedo, Jacobo; Fernández, José R.; Quintanilla, Ramón. Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a6/

[1] Abo-Dahab, S.M. (2020). A two-temperature generalized magneto-thermoelastic formulation for a rotating medium with thermal shock under hydrostatic initial stress, Continuum Mechanics and Thermodynamics 32(3): 883-900.

[2] Ali, G. and Romano, V. (2017). Existence and uniqueness for a two-temperature energy-transport model for semiconductors, Journal of Mathematical Analysis and Applications 449(2): 1248-1264.

[3] Barabasz, B., Gajda-Zagórska, E., Migórski, S., Paszyński, M., Schaefer, R. and Smołka, M. (2014). A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science 24(4): 865-886, DOI: 10.2478/amcs-2014-0064.

[4] Bazarra, N., Campo, M. and Fernández, J.R. (2019). A thermoelastic problem with diffusion, microtemperatures, and microconcentrations, Acta Mechanica 230: 31-48.

[5] Bazarra, N., Fernández, J.R., Magaña, A. and Quintanilla, R. (2020). Numerical analysis of a dual-phase-lag model involving two temperatures, Mathematical Methods in the Applied Sciences 43(5): 2759-2771.

[6] Campo, M., Copetti, M.I., Fernández, J.R. and Quintanilla, R. (2022). On existence and numerical approximation in phase-lag thermoelasticity with two temperatures, Discrete and Continuous Dynamical Systems B 27(4): 2221-2247.

[7] Campo, M., Fernández, J., Kuttler, K., Shillor, M. and Viano, J. (2006). Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Computer Methods in Applied Mechanics and Engineering 196(1): 476-488.

[8] Chen, P. and Gurtin, M.E. (1968). On a theory of heat involving two temperatures, Zeitschrift fur angewandte Mathematik und Physik 19: 614-627.

[9] Chen, P., Gurtin, M.E. and Williams, W. (1969). On the thermodynamics of non-simple materials with two temperatures, Zeitschrift fur angewandte Mathematik und Physik 20: 107-112.

[10] Chen, P., Gurtin, M.E. and Williams, W.O. (1968). A note on non-simple heat conduction, Zeitschrift fur angewandte Mathematik und Physik 19: 969-970.

[11] Ciarlet, P. (1993). Basic error estimates for elliptic problems, in P.G. Ciarlet and J. Lions (Eds), Handbook of Numerical Analysis, Springer-Verlag, Berlin, pp. 17-351.

[12] Clement, P. (1975). Approximation by finite element functions using local regularization, RAIRO Mathematical Modeling and Numerical Analysis 9(R2): 77-84.

[13] Cowin, S. (1985). The viscoelastic behavior of linear elastic materials with voids, Journal of Elasticity 15: 185-191.

[14] Cowin, S. and Nunziato, J. (1983). Linear elastic materials with voids, Journal of Elasticity 13: 125-147.

[15] D’Apice, C., Zampoli, V. and Chiriţă, S. (2020). On the wave propagation in the thermoelasticity theory with two temperatures, Journal of Elasticity 140(2): 257-272.

[16] Feng, B. and Apalara, T.A. (2019). Optimal decay for a porous elasticity system with memory, Journal of Mathematical Analysis and Applications 470(2): 1108-1128.

[17] Feng, B. and Yin, M. (2019). Decay of solutions for a one-dimensional porous elasticity system with memory: The case of non-equal wave speeds, Mathematics and Mechanics of Solids 24(8): 2361-2373.

[18] Fernández, J.R. and Quintanilla, R. (2021a). Two-temperatures thermo-porous-elasticity with microtemperatures, Applied Mathematical Letters 111: 106628.

[19] Fernández, J.R. and Quintanilla, R. (2021b). Uniqueness and exponential instability in a new two-temperature thermoelastic theory, AIMS Mathematics 6(6): 5440-5451.

[20] Grot, R. (1969). Thermodynamics of a continuum with microstructure, International Journal of Engineering Science 7(8): 801-814.

[21] Gruais, I. and Poliševski, D. (2017). Model of two-temperature convective transfer in porous media, Zeitschrift fur angewandte Mathematik und Physik 68(6): 143.

[22] Ieşan, D. (2007). Thermoelasticity of bodies with microstructure and microtemperatures, International Journal of Solids and Structures 44(25-26): 8648-8653.

[23] Ieşan, D. and Quintanilla, R. (2000). On a theory of thermoelasticity with microtemperatures, Journal of Thermal Stresses 23(3): 195-215.

[24] Kumar, K., Prasad, R. and Kumar, R. (2020). Thermoelastic interactions on hyperbolic two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity, European Journal of Mechanics A: Solids 82: 104007.

[25] Leseduarte, M., Magaña, A.M. and Quintanilla, R. (2010). On the time decay of solutions in porous-thermo-elasticity of type II, Discrete and Continuous Dynamical Systems B 13(2): 375-391.

[26] Liu, Z. and Zheng, S. (1999). Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton.

[27] Magaña, A., Miranville, A. and Quintanilla, R. (2020). Exponential decay of solutions in type II thermo-porous-elasticity with quasi-static microvoids, Journal of Mathematical Analysis and Applications 492(2): 124504.

[28] Magaña, A. and Quintanilla, R. (2018). Exponential stability in type III thermoelasticity with microtemperatures, Zeitschrift fur angewandte Mathematik und Physik 69(5): 129.

[29] Magaña, A. and Quintanilla, R. (2021). Decay of quasi-static porous-thermo-elastic waves, Zeitschrift fur angewandte Mathematik und Physik 72: 125.

[30] Makki, A., Miranville, A. and Sadaka, G. (2019). On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials, Discrete and Continuous Dynamical Systems Series B 24(3): 1341-1365.

[31] Makki, A., Miranville, A. and Sadaka, G. (2021). On the conserved Caginalp phase-field system with logarithmic potentials based on the Maxwell-Cattaneo law with two temperatures, Applied Mathematics and Optimations 84(2): 1285-1316.

[32] Miranville, A. and Quintanilla, R. (2016). On the Caginalp phase-field systems with two temperatures and the Maxwell-Cattaneo law, Mathematical Methods in the Applied Sciences 39(15): 4385-4397.

[33] Miranville, A. and Quintanilla, R. (2019). Exponential decay in one-dimensional type III thermoelasticity with voids, Applied Mathematical Letters 94: 30-37.

[34] Miranville, A. and Quintanilla, R. (2020). Exponential decay in one-dimensional type II thermoviscoelasticity with voids, Journal of Computational and Applied Mathematics 368: 112573.

[35] Mukhopadhyay, S., Picard, R., Trostorff, S. and Waurick, M. (2017). A note on a two-temperature model in linear thermoelasticity, Mathematics and Mechanics of Solids 22(5): 905-918.

[36] Nunziato, J. and Cowin, S.C. (1979). A nonlinear theory of elastic materials with voids, Archive for Rational Mechanics and Analysis 72: 175-201.

[37] Pamplona, P., Muñoz-Rivera, J.M. and Quintanilla, R. (2011). On the decay of solutions for porous-elastic systems with history, Journal of Mathematical Analysis and Applications 379(2): 682-705.

[38] Passarella, F., Tibullo, V. and Viccione, G. (2017). Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures, Meccanica 52: 3033-3041.

[39] Riha, P. (1975). On the theory of heat-conducting micropolar fluids with microtemperatures, Acta Mechanica 23: 1-8.

[40] Riha, P. (1976). On the microcontinuum model of heat conduction in materials with inner structure, International Journal of Engineering Science 14(6): 529-535.

[41] Sarkar, N. and Mondal, S. (2020). Thermoelastic plane waves under the modified Green-Lindsay model with two-temperature formulation, Zeitschrift fur Angewandte Mathematik und Mechanik 100(11): e201900267.

[42] Sellitto, A., Carlomagno, I. and Domenico, M.D. (2021). Nonlocal and nonlinear effects in hyperbolic heat transfer in a two-temperature model, Zeitschrift fur Angewandte Mathematik und Mechanik 72(1): 7.

[43] Warren, W. and Chen, P.J. (1973). Wave propagation in two temperatures theory of thermoelaticity, Acta Mechanica 16: 83-117.

[44] Youssef, H. and Elsibai, K.A. (2015). On the theory of two-temperature thermoelasticity without energy dissipation of Green-Naghdi model, Applicable Analysis 94(10): 1997-2010.