Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_1_a5, author = {Ram{\'\i}rez Jer\'onimo, Luis Felipe and Saldivar, Belem and Aguilar-Iba\~nez, Carlos and Acosta, Jos\'e \'Angel}, title = {An integral and {MRAC-based} approach to the adaptive stabilisation of a class of linear time-delay systems with unknown parameters}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {81--91}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a5/} }
TY - JOUR AU - Ramírez Jerónimo, Luis Felipe AU - Saldivar, Belem AU - Aguilar-Ibañez, Carlos AU - Acosta, José Ángel TI - An integral and MRAC-based approach to the adaptive stabilisation of a class of linear time-delay systems with unknown parameters JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 81 EP - 91 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a5/ LA - en ID - IJAMCS_2024_34_1_a5 ER -
%0 Journal Article %A Ramírez Jerónimo, Luis Felipe %A Saldivar, Belem %A Aguilar-Ibañez, Carlos %A Acosta, José Ángel %T An integral and MRAC-based approach to the adaptive stabilisation of a class of linear time-delay systems with unknown parameters %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 81-91 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a5/ %G en %F IJAMCS_2024_34_1_a5
Ramírez Jerónimo, Luis Felipe; Saldivar, Belem; Aguilar-Ibañez, Carlos; Acosta, José Ángel. An integral and MRAC-based approach to the adaptive stabilisation of a class of linear time-delay systems with unknown parameters. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 1, pp. 81-91. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a5/
[1] Aguilar-Ibañez, C., García-Canseco, E. and Suárez-Castañón, M.S. (2013). Control adaptable basado en inmersión e invarianza (I&I) de una clase de sistemas lineales de segundo orden con parámetros desconocidos, Congreso Nacional de Control Automático (CNCA), Ensenada, Baja California Sur, Mexico, pp. 56-61.
[2] Aguilar-Ibañez, C., Saldivar, B., Jiménez-Lizarraga, M., García-Canseco, E. and Garrido, R. (2021). Parametric uncertain second-order linear system output-adaptive stabilization: An integral and MRCA based approach, European Journal of Control 57: 76-81.
[3] Ali, A.K. and Mahmoud, M.M. (2022). Improved design of nonlinear control systems with time delay, International Journal of Robotics and Control Systems 2(2): 317-331.
[4] Åström, K.J. and Wittenmark, B. (2008). Adaptive Control, 2nd Edn, Dover Publications, Inc., Mineola.
[5] Bekcheva, M., Mounier, H. and Greco, L. (2017). Control of differentially flat linear delay systems with constraints, IFAC-PapersOnLine 50(1): 13348-13353.
[6] Bresch-Pietri, D., Chauvin, J. and Petit, N. (2012). Adaptive control scheme for uncertain time-delay systems, Automatica 48(8): 1536-1552.
[7] Evesque, S., Annaswamy, A., Niculescu, S. and Dowling, A. (2003). Adaptive control of a class of time-delay systems, Journal of Dynamic Systems, Measurement and Control 125(2): 186-193.
[8] Fang, M. and Park, J. (2013). A multiple integral approach to stability of neutral time-delay systems, Applied Mathematics and Computation 224: 714-718.
[9] Gu, K., Kharitonov, V.L. and Chen, J. (2003). Stability of Time-Delay Systems, Birkhäuser, New York.
[10] Hua, C., Sun, Z. and Chen, Z. (2022). Stabilization for time-delay nonlinear systems with unknown time-varying control coefficients, Journal of the Franklin Institute 359(16): 8895-8909.
[11] Jia, X., Xu, S., Lu, J., Li, Y., Chu, Y. and Zhang, Z. (2018). Adaptive control for uncertain nonlinear time-delay systems in a lower-triangular form, Journal of the Franklin Institute 355(9): 3911-3925.
[12] Mathiyalagan, K. and Sangeetha, G. (2019). Finite-time stabilization of nonlinear time delay systems using LQR based sliding mode control, Journal of the Franklin Institute 356(7): 3948-3964.
[13] Mera, M., Castanos, F. and Poznyak, A. (2014). Quantised and sampled output feedback for nonlinear systems, International Journal of Control 87(12): 2475-2487.
[14] Mirkin, B. and Gutman, P.-O. (2010). Lyapunov-based adaptive output-feedback control of MIMO nonlinear plants with unknown, time-varying state delays, IFAC Proceedings Volumes 43(2): 33-38.
[15] Mirkin, B.M. and Gutman, P.-O. (2005). Output feedback model reference adaptive control for multi-input-multi-output plants with state delay, Systems & Control Letters 54(10): 961-972.
[16] Mirkin, B., Mirkin, E.L. and Gutman, P.-O. (2008). Model reference adaptive control of nonlinear plant with dead time, 2008 47th IEEE Conference on Decision and Control, Cancún, Quintana Roo, Mexico, pp. 1920-1924.
[17] Nguyen, K.D. (2018). A predictor-based model reference adaptive controller for time-delay systems, IEEE Transactions on Automatic Control 63(12): 4375-4382.
[18] Niculescu, S.-I. and Annaswamy, A.M. (2003). An adaptive smith-controller for time-delay systems with relative degree n* ≤ 2, Systems & Control Letters 49(5): 347-358.
[19] Orlov, Y., Belkoura, L., Richard, J.-P. and Dambrine, M. (2003). Adaptive identification of linear time-delay systems, International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 13(9): 857-872.
[20] Orlov, Y., Kolmanovsky, I. and Gomez, O. (2009). Adaptive identification of linear time-delay systems: From theory toward application to engine transient fuel identification, International Journal of Adaptive Control and Signal Processing 23(2): 150-165.
[21] Ortega, R., Hsu, L. and Astolfi, A. (2003). Immersion and invariance adaptive control of linear multivariable systems, Systems & Control Letters 49(1): 37-47.
[22] Phoojaruenchanachai, S., Uahchinkul, K. and Prempraneerach, Y. (1998). Robust stabilisation of a state delayed system, IEEE Proceedings-Control Theory and Applications 145(1): 87-91.
[23] Yao, D., Li, J. and Wu, J. (2019). Adaptive control design with assigned tracking accuracy for a class of nonlinearly parameterized input-delayed systems, Mathematical Problems in Engineering 2019, Article ID: 8602719.
[24] Yuan, S., Zhang, L. and Baldi, S. (2019). Adaptive stabilization of impulsive switched linear time-delay systems: A piecewise dynamic gain approach, Automatica 103: 322-329.
[25] Yuan, S., Zhang, L., Zhang, F., Wan, Y. and Baldi, S. (2018). Robust adaptive stabilization of switched higher-order planar nonlinear systems with unknown time-varying delays, IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, pp. 3249-3254.