Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2024_34_1_a2, author = {Ordaz, Patricio and Romero-Trejo, Hugo and Cuvas, Carlos and Sandre, Omar}, title = {Dynamic sliding mode control based on a full-order observer: {Underactuated} electro-mechanical system regulation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {29--43}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a2/} }
TY - JOUR AU - Ordaz, Patricio AU - Romero-Trejo, Hugo AU - Cuvas, Carlos AU - Sandre, Omar TI - Dynamic sliding mode control based on a full-order observer: Underactuated electro-mechanical system regulation JO - International Journal of Applied Mathematics and Computer Science PY - 2024 SP - 29 EP - 43 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a2/ LA - en ID - IJAMCS_2024_34_1_a2 ER -
%0 Journal Article %A Ordaz, Patricio %A Romero-Trejo, Hugo %A Cuvas, Carlos %A Sandre, Omar %T Dynamic sliding mode control based on a full-order observer: Underactuated electro-mechanical system regulation %J International Journal of Applied Mathematics and Computer Science %D 2024 %P 29-43 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a2/ %G en %F IJAMCS_2024_34_1_a2
Ordaz, Patricio; Romero-Trejo, Hugo; Cuvas, Carlos; Sandre, Omar. Dynamic sliding mode control based on a full-order observer: Underactuated electro-mechanical system regulation. International Journal of Applied Mathematics and Computer Science, Tome 34 (2024) no. 1, pp. 29-43. http://geodesic.mathdoc.fr/item/IJAMCS_2024_34_1_a2/
[1] Andrade-Da Silva, J.M., Edwards, C. and Spurgeon, S.K. (2009). Linear matrix inequality based dynamic output feedback sliding mode control for uncertain plants, American Control Conference, ACC’09, St. Louis, USA, pp. 763-768.
[2] Atassi, A.N. and Khalil, H.K. (1999). A separation principle for the stabilization of a class of nonlinear systems, IEEE Transactions on Automatic Control 44(9): 1672-1687.
[3] Cao, K., Qian, C. and Gu, J. (2023). Global sampled-data stabilization via static output feedback for a class of nonlinear uncertain systems, International Journal of Robust and Nonlinear Control 33(4): 2913-2929.
[4] Choi, H.H. and Ro, K. (2005). LMI-based sliding-mode observer design method, IEE Proceedings: Control Theory and Applications 152(1): 113-115.
[5] Gahinet, P. and Pierre, A. (1994). A linear matrix inequality approach to H∞ control, International Journal of Robust and Nonlinear Control 4(4): 421-448.
[6] Haddad, W.M. and Chellaboina, V. (2011). Nonlinear Dynamical Systems and Control: A Lyapunov-based Approach, Princeton University Press, Princeton.
[7] Jafari, M. and Mobayen, S. (2019). Second-order sliding set design for a class of uncertain nonlinear systems with disturbances: An LMI approach, Mathematics and Computers in Simulation 156: 110-125, DOI: 10.1016/j.matcom.2018.06.015.
[8] Khalil, K.M. and Elshenawy, A. (2021). Robust model integral predictive control design for reference tracking dc servomechanism, 2021 10th International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, pp. 243-253.
[9] Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171-183, DOI: 10.34768/amcs-2022-0013.
[10] Liu, H. and Khalil, H.K. (2019). Output feedback stabilization using super-twisting control and high-gain observer, International Journal of Robust and Nonlinear Control 29(3): 601-617.
[11] Luna, L., Asiain, E. and Garrido, R. (2020). Servo velocity control using a p+ ADOB controller, IFAC-PapersOnLine 53(2): 1300-1305.
[12] Ordaz, P., Ordaz, M., Cuvas, C. and Santos, O. (2019). Reduction of matched and unmatched uncertainties for a class of nonlinear perturbed systems via robust control, International Journal of Robust and Nonlinear Control 29(8): 2510-2524.
[13] Peng, C., Zhang, A. and Li, J. (2021). Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties, International Journal of Applied Mathematics and Computer Science 31(4): 635-645, DOI: 10.34768/amcs-2021-0044.
[14] Poznyak, A., Polyakov, A. and Azhmyakov, V. (2014). Attractive Ellipsoids in Robust Control, Springer, Boston.
[15] Rudenko, O. and Hedberg, C. (2013). Strong and weak nonlinear dynamics: Models, classification, examples, Acoustical Physics 59(6): 644-650.
[16] Ruderman, M. (2015). Presliding hysteresis damping of LuGre and Maxwell-slip friction models, Mechatronics 30: 225-230, DOI: 10.1016/j.mechatronics.2015.07.007.
[17] Sánchez, B., Cuvas, C., Ordaz, P., Santos-Sánchez, O. and Poznyak, A. (2019). Full-order observer for a class of nonlinear systems with unmatched uncertainties: Joint attractive ellipsoid and sliding mode concepts, IEEE Transactions on Industrial Electronics 67(7): 5677-5686.
[18] Shtessel, Y., Edwards, C., Fridman, L. and Levant, A. (2014). Sliding Mode Control and Observation, Springer, New York.
[19] Silva, J.M.A.-D., Edwards, C. and Spurgeon, S.K. (2009). Sliding-mode output-feedback control based on LMIs for plants with mismatched uncertainties, IEEE Transactions on Industrial Electronics 56(9): 3675-3683.
[20] Tsinias, J. and Theodosis, D. (2016). Luenberger-type observers for a class of nonlinear triangular control systems, IEEE Transactions on Automatic Control 61(12): 3797-3812.
[21] Utkin, V., Poznyak, A., Orlov, Y.V. and Polyakov, A. (2020). Road Map for Sliding Mode Control Design, Springer, Cham.
[22] Zhang, H., Zhao, X., Zhang, L., Niu, B., Zong, G. and Xu, N. (2022). Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization, International Journal of Robust and Nonlinear Control 32(14): 8163-8185.