Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_4_a8, author = {Ieosanurak, Weenakorn and Khomkham, Banphatree and Moumeesri, Adisak}, title = {Claim modeling and insurance premium pricing under a bonus-malus system in motor insurance}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {637--650}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a8/} }
TY - JOUR AU - Ieosanurak, Weenakorn AU - Khomkham, Banphatree AU - Moumeesri, Adisak TI - Claim modeling and insurance premium pricing under a bonus-malus system in motor insurance JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 637 EP - 650 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a8/ LA - en ID - IJAMCS_2023_33_4_a8 ER -
%0 Journal Article %A Ieosanurak, Weenakorn %A Khomkham, Banphatree %A Moumeesri, Adisak %T Claim modeling and insurance premium pricing under a bonus-malus system in motor insurance %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 637-650 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a8/ %G en %F IJAMCS_2023_33_4_a8
Ieosanurak, Weenakorn; Khomkham, Banphatree; Moumeesri, Adisak. Claim modeling and insurance premium pricing under a bonus-malus system in motor insurance. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 4, pp. 637-650. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a8/
[1] [1] Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control 19(6): 716-723.
[2] [2] Bulbul, S. and Baykal, K. (2016). Optimal bonus malus system design in motor third party liability insurance in Turkey: Negative binomial model, International Journal of Economics and Finance 8(8): 205-211.
[3] [3] Bühlmann, H. (1970). Mathematical Methods in Risk Theory, Springer, New York.
[4] [4] Cojocaru, I. (2017). Ruin probabilities in multivariate risk models with periodic common shock, Scandinavian Actuarial Journal 2017(2): 159-174.
[5] [5] De Jong, P. and Heller, G. (2008). Generalized Linear Models for Insurance Data, Cambridge University Press, New York.
[6] [6] Emad, A. and Ali, I. (2016). Bayesian approach for bonus-malus systems with Gamma distributed claim severities in vehicles insurance, British Journal of Economics, Management, and Trade 14(1): 1-9.
[7] [7] Frangos, N. and Vrontos, S. (2001). Design of optimal bonus-malus systems with a frequency and a severity component on an individual basis in automobile insurance, Astin Bulletin 31(1): 1-22.
[8] [8] Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281-297, DOI: 10.34768/amcs-2020-0022.
[9] [9] Grzegorzewski, P. and Romaniuk, M. (2022). Bootstrap methods for epistemic fuzzy data, International Journal of Applied Mathematics and Computer Science 32(2): 285-297, DOI: 10.34768/amcs-2022-0021.
[10] [10] Karlis, D. and Xekalaki, E. (2005). Mixed Poisson distributions, International Statistical Review 73(1): 35-58.
[11] [11] Lemaire, J. (1995). Bonus-malus systems in automobile insurance, Insurance: Mathematics and Economics 3(16): 227.
[12] [12]Lindley, D. (1958). Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society B 20(1): 102-107.
[13] [13] Matsui, M. and Rolski, T. (2016). Prediction in a mixed Poisson cluster model, Stochastic Models 32(3): 460-480.
[14] [14] Mert, M. and Saykan, Y. (2005). On a bonus-malus system where the claim frequency distribution is geometric and the claim severity distribution is Pareto, Hacettepe Journal of Mathematics and Statistics 34(1): 75-81.
[15] [15] Moumeesri, A., Klongdee, W. and Pongsart, T. (2020). Bayesian bonus-malus premium with Poisson-Lindley distributed claim frequency and lognormal-Gamma distributed claim severity in automobile insurance, WSEAS Transactions on Mathematics 19(46): 443-451.
[16] [16] Moumeesri, A. and Pongsart, T. (2022). Bonus-malus premiums based on claim frequency and the size of claims, Risks 10(9): 181.
[17] [17] Nedjar, S. and Zeghdoudi, H. (2016). On Gamma Lindley distribution: Properties and simulations, Journal of Computational and Applied Mathematics 298: 167-174.
[18] [18] Ni, W., Constantinescu, C. and Pantelous, A. (2014). Bonus-malus systems with Weibull distributed claim severities, Annals of Actuarial Science 8(2): 217-233.
[19] [19] Nowak, P. and Romaniuk, M. (2013). A fuzzy approach to option pricing in a Levy process setting, International Journal of Applied Mathematics and Computer Science 23(3): 613-622, DOI: 10.2478/amcs-2013-0046.
[20] [20] Pongsart, T., Moumeesri, A., Mayureesawan, T. and Phaphan, W. (2021). Computing Bayesian bonus-malus premium distinguishing among different multiple types of claims, Lobachevskii Journal of Mathematics 42(13): 3208-3217.
[21] [21] Romaniuk, M. (2017). Analysis of the insurance portfolio with an embedded catastrophe bond in a case of uncertain parameter of the insurer’s share, in A. Grzech et al. (Eds), Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology, ISAT 2016. Part IV: Advances in Intelligent Systems and Computing, Springer, Berlin/Heidelberg, pp. 33-43.
[22] [22] Sankaran, M. (1970). The discrete Poisson-Lindley distribution, Biometrics 26(1): 145-149.
[23] [23] Shanker, R. and Mishra, A. (2013). A two-parameter Lindley distribution, Statistics in Transition-New Series 14(1): 45-56.
[24] [24] Shanker, R. and Mishra, A. (2014). A two-parameter Poisson-Lindley distribution, International Journal of Statistics and Systems 9(1): 79-85.
[25] [25] Stone, M. (1979). Comments on model selection criteria of Akaike and Schwartz, Journal of the Royal Statistical Society B 41(2): 276-278.
[26] [26] Tank, F. and Tuncel, A. (2015). Some results on the extreme distributions of surplus process with nonhomogeneous claim occurrences, Hacettepe Journal of Mathematics and Statistics 44(2): 475-484.
[27] [27] Tremblay, L. (1992). Using the Poisson inverse Gaussian in bonus-malus systems, Astin Bulletin 22(1): 97-106.
[28] [28] Tzougas, G., Hoon, W. and Lim, J. (2019a). The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking, European Actuarial Journal 9(1): 323-344.
[29] [29] Tzougas, G., Yik, W. and Mustaqeem, M. (2019b). Insurance ratemaking using the exponential-lognormal regression model, Annals of Actuarial Science 14(1): 42-71.
[30] [30] Walhin, J. and Paris, J. (1999). Using mixed Poisson processes in connection with bonus-malus systems, ASTIN Bulletin 29(1): 81-99.
[31] [31] Willmot, G. (1986). Mixed compound Poisson distributions, ASTIN Bulletin 16(1): 59-79.