Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_4_a7, author = {Ashok, Kanneboina and Gopikrishnan, Sundaram}, title = {Improving security performance of healthcare data in the {Internet} of medical things using a hybrid metaheuristic model}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {623--636}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a7/} }
TY - JOUR AU - Ashok, Kanneboina AU - Gopikrishnan, Sundaram TI - Improving security performance of healthcare data in the Internet of medical things using a hybrid metaheuristic model JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 623 EP - 636 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a7/ LA - en ID - IJAMCS_2023_33_4_a7 ER -
%0 Journal Article %A Ashok, Kanneboina %A Gopikrishnan, Sundaram %T Improving security performance of healthcare data in the Internet of medical things using a hybrid metaheuristic model %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 623-636 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a7/ %G en %F IJAMCS_2023_33_4_a7
Ashok, Kanneboina; Gopikrishnan, Sundaram. Improving security performance of healthcare data in the Internet of medical things using a hybrid metaheuristic model. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 4, pp. 623-636. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a7/
[1] [1] Ahmad, M., Jabbar, S., Ahmad, A., Piccialli, F. and Jeon, G. (2018). A sustainable solution to support data security in high bandwidth healthcare remote locations by using TCP cubic mechanism, IEEE Transactions on Sustainable Computing 5(2): 249-259.
[2] [2] Alladi, T. and Chamola, V. (2020). HARCI: A two-way authentication protocol for three entity healthcare IoT networks, IEEE Journal on Selected Areas in Communications 39(2): 361-369.
[3] [3] Amato, F., Casola, V., Cozzolino, G., De Benedictis, A. and Moscato, F. (2019). Exploiting workflow languages and semantics for validation of security policies in IoT composite services, IEEE Internet of Things Journal 7(5): 4655-4665.
[4] [4] Aujla, G.S. and Jindal, A. (2020). A decoupled blockchain approach for edge-envisioned IoT-based healthcare monitoring, IEEE Journal on Selected Areas in Communications 39(2): 491-499.
[5] [5] Azeem, M., Ullah, A., Ashraf, H., Jhanjhi, N., Humayun, M., Aljahdali, S. and Tabbakh, T.A. (2021). Fog-oriented secure and lightweight data aggregation in IoMT, IEEE Access 9(1): 111072-111082.
[6] [6] Bao, Y., Qiu, W. and Cheng, X. (2021). Secure and lightweight fine-grained searchable data sharing for IoT-oriented and cloud-assisted smart healthcare system, IEEE Internet of Things Journal 9(4): 2513-2526.
[7] [7] Besher, K.M., Subah, Z. and Ali, M.Z. (2020). IoT sensor initiated healthcare data security, IEEE Sensors Journal 21(10): 11977-11982.
[8] [8] Bi, H., Liu, J. and Kato, N. (2021). Deep learning-based privacy preservation and data analytics for IoT enabled healthcare, IEEE Transactions on Industrial Informatics 18(7): 4798-4807.
[9] [9] Chinaei, M.H., Gharakheili, H.H. and Sivaraman, V. (2021). Optimal witnessing of healthcare IoT data using blockchain logging contract, IEEE Internet of Things Journal 8(12): 10117-10130.
[10] [10] Egala, B.S., Pradhan, A.K., Badarla, V. and Mohanty, S.P. (2021). Fortified-chain: A blockchain-based framework for security and privacy-assured internet of medical things with effective access control, IEEE Internet of Things Journal 8(14): 11717-11731.
[11] [11] Elayan, H., Aloqaily, M. and Guizani, M. (2021). Sustainability of healthcare data analysis IoT-based systems using deep federated learning, IEEE Internet of Things Journal 9(10): 7338-7346.
[12] [12] Gao, Y., Lin, H., Chen, Y. and Liu, Y. (2021). Blockchain and SGX-enabled EDGE-computing-empowered secure IoMT data analysis, IEEE Internet of Things Journal 8(21): 15785-15795.
[13] [13] Garg, N., Wazid, M., Das, A.K., Singh, D.P., Rodrigues, J.J. and Park, Y. (2020). BAKMP-IoMT: Design of blockchain enabled authenticated key management protocol for internet of medical things deployment, IEEE Access 8(1): 95956-95977.
[14] [14] Gope, P., Gheraibia, Y., Kabir, S. and Sikdar, B. (2020). A secure IoT-based modern healthcare system with fault-tolerant decision making process, IEEE Journal of Biomedical and Health Informatics 25(3): 862-873.
[15] [15] Khan, A.Y., Latif, R., Latif, S., Tahir, S., Batool, G. and Saba, T. (2019). Malicious insider attack detection in IoTs using data analytics, IEEE Access 8(1): 11743-11753.
[16] [16] Li, J., Cai, J., Khan, F., Rehman, A.U., Balasubramaniam, V., Sun, J. and Venu, P. (2020). A secured framework for SDN-based EDGE computing in IoT-enabled healthcare system, IEEE Access 8(1): 135479-135490.
[17] [17] Liu, L. and Li, Z. (2022). Permissioned blockchain and DEEP reinforcement learning enabled security and energy efficient healthcare internet of things, IEEE Access 10(1): 53640-53651.
[18] [18] Liu, Y., Shan, G., Liu, Y., Alghamdi, A., Alam, I. and Biswas, S. (2022). Blockchain bridges critical national infrastructures: E-healthcare data migration perspective, IEEE Access 10(1): 28509-28519.
[19] [19] Liu, Y., Yu, J., Fan, J., Vijayakumar, P. and Chang, V. (2021). Achieving privacy-preserving DSSE for intelligent IoT healthcare system, IEEE Transactions on Industrial Informatics 18(3): 2010-2020.
[20] [20] Masud, M., Gaba, G.S., Choudhary, K., Hossain, M.S., Alhamid, M.F. and Muhammad, G. (2021). Lightweight and anonymity-preserving user authentication scheme for IoT-based healthcare, IEEE Internet of Things Journal 9(4): 2649-2656.
[21] [21] Meng, Y., Huang, Z., Shen, G. and Ke, C. (2019). SDN-based security enforcement framework for data sharing systems of smart healthcare, IEEE Transactions on Network and Service Management 17(1): 308-318.
[22] [22] More, S., Singla, J., Verma, S., Ghosh, U., Rodrigues, J.J., Hosen, A.S. and Ra, I.-H. (2020). Security assured CNN-based model for reconstruction of medical images on the internet of healthcare things, IEEE Access 8(1): 126333-126346.
[23] [23] Nguyen, D.C., Pathirana, P.N., Ding, M. and Seneviratne, A. (2021). BEdgeHealth: A decentralized architecture for EDGE-based IoMT networks using blockchain, IEEE Internet of Things Journal 8(14): 11743-11757.
[24] [24] Rachakonda, L., Bapatla, A.K., Mohanty, S.P. and Kougianos, E. (2020). SaYoPillow: Blockchain-integrated privacy-assured IoMT framework for stress management considering sleeping habits, IEEE Transactions on Consumer Electronics 67(1): 20-29.
[25] [25] Rathore, S., Park, J.H. and Chang, H. (2021). Deep learning and blockchain-empowered security framework for intelligent 5G-enabled IoT, IEEE Access 9(1): 90075-90083.
[26] [26] Ray, P.P., Chowhan, B., Kumar, N. and Almogren, A. (2021). BIoTHR: Electronic health record servicing scheme in IoT-blockchain ecosystem, IEEE Internet of Things Journal 8(13): 10857-10872.
[27] [27] Ren, J., Li, J., Liu, H. and Qin, T. (2021). Task offloading strategy with emergency handling and blockchain security in SDN-empowered and FOG-assisted healthcare IoT, Tsinghua Science and Technology 27(4): 760-776.
[28] [28] Rezaeibagha, F., Mu, Y., Huang, K. and Chen, L. (2020). Secure and efficient data aggregation for IoT monitoring systems, IEEE Internet of Things Journal 8(10): 8056-8063.
[29] [29] Wang, K., Chen, C.-M., Tie, Z., Shojafar, M., Kumar, S. and Kumari, S. (2021). Forward privacy preservation in IoT-enabled healthcare systems, IEEE Transactions on Industrial Informatics 18(3): 1991-1999.
[30] [30] Wu, G., Wang, S. and Ning, Z. (2021). Blockchain-enabled privacy-preserving access control for data publishing and sharing in the internet of medical things, IEEE Internet of Things Journal 9(11): 8091-8104.
[31] [31] Xiong, H., Jin, C., Alazab, M., Yeh, K.-H., Wang, H., Gadekallu, T.R., Wang, W. and Su, C. (2021). On the design of blockchain-based ECDSA with fault-tolerant batch verification protocol for blockchain-enabled IoMT, IEEE Journal of Biomedical and Health Informatics 26(5): 1977-1986.
[32] [32] Xu, L., Zhou, X., Tao, Y., Liu, L., Yu, X. and Kumar, N. (2021). Intelligent security performance prediction for IoT-enabled healthcare networks using an improved CNN, IEEE Transactions on Industrial Informatics 18(3): 2063-2074.
[33] [33] Yang, X., Yang, X., Yi, X., Khalil, I., Zhou, X., He, D., Huang, X. and Nepal, S. (2021). Blockchain-based secure and lightweight authentication for Internet of things, IEEE Internet of Things Journal 9(5): 3321-3332.
[34] [34] Zaman, S., Khandaker, M.R., Khan, R.T., Tariq, F. and Wong, K.-K. (2022). Thinking out of the blocks: Holochain for distributed security in IoT healthcare, IEEE Access 10(1): 37064-37081.
[35] [35] Zhang, Y., Sun, Y., Jin, R., Lin, K. and Liu, W. (2021). High-performance isolation computing technology for smart IoT healthcare in cloud environments, IEEE Internet of Things Journal 8(23): 16872-16879.
[36] [36] Zhu, F., Yi, X., Abuadbba, A., Khalil, I., Nepal, S. and Huang, X. (2021). Cost-effective authenticated data redaction with privacy protection in IoT, IEEE Internet of Things Journal 8(14): 11678-11689.
[37] [37] Zulkifl, Z., Khan, F., Tahir, S., Afzal, M., Iqbal,W., Rehman,A., Saeed, S. and Almuhaideb, A.M. (2022). FBASHI: Fuzzy and blockchain-based adaptive security for healthcare IoTs, IEEE Access 10: 15644-15656.