Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_4_a4, author = {Bart{\l}omiejczyk, Agnieszka and Bodnar, Marek and Bogda\'nska, Magdalena U. and Piotrowska, Monika J.}, title = {Travelling waves for low-grade glioma growth and response to a chemotherapy model}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {569--581}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a4/} }
TY - JOUR AU - Bartłomiejczyk, Agnieszka AU - Bodnar, Marek AU - Bogdańska, Magdalena U. AU - Piotrowska, Monika J. TI - Travelling waves for low-grade glioma growth and response to a chemotherapy model JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 569 EP - 581 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a4/ LA - en ID - IJAMCS_2023_33_4_a4 ER -
%0 Journal Article %A Bartłomiejczyk, Agnieszka %A Bodnar, Marek %A Bogdańska, Magdalena U. %A Piotrowska, Monika J. %T Travelling waves for low-grade glioma growth and response to a chemotherapy model %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 569-581 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a4/ %G en %F IJAMCS_2023_33_4_a4
Bartłomiejczyk, Agnieszka; Bodnar, Marek; Bogdańska, Magdalena U.; Piotrowska, Monika J. Travelling waves for low-grade glioma growth and response to a chemotherapy model. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 4, pp. 569-581. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a4/
[1] [1] Adenis, L., Plaszczynski, S., Grammaticos, B., Pallud, J. and Badoual, M. (2021). The effect of radiotherapy on diffuse low-grade gliomas evolution: Confronting theory with clinical data, Journal of Personalized Medicine 11(8): 818.
[2] [2] Belmonte-Beitia, J. (2016). Existence of travelling wave solutions for a Fisher-Kolmogorov system with biomedical applications, Communications in Nonlinear Science and Numerical Simulation 36: 14-20, DOI: 10.1016/j.cnsns.2015.11.016.
[3] [3] Bodnar, M., Bogdańska, M.U. and Piotrowska, M. (2019). Mathematical analysis of a generalised model of chemotherapy for low grade gliomas, Discrete and Continuous Dynamical Systems B 24(5): 2149-2167, DOI: 10.3934/dcdsb.2019088.
[4] [4] Bodnar, M. and Vela Pérez, M. (2019). Mathematical and numerical analysis of low-grade gliomas model and the effects of chemotherapy, Communications in Nonlinear Science and Numerical Simulation 72: 552-564, DOI: DOI: 10.1016/j.cnsns.2019.01.015.
[5] [5] Bogdańska, M.U., Bodnar, M., Belmonte-Beitia, J., Murek, M., Schucht, P., Beck, J. and Pérez-García, V.M. (2017). A mathematical model of low grade gliomas treated with temozolomide and its therapeutical implications, Mathematical Biosciences 288: 1-13, DOI: 10.1016/j.mbs.2017.02.003.
[6] [6] Bogdańska, M.U., Bodnar, M., Piotrowska, M.J., Murek, M., Schucht, P., Beck, J., Martínez-González, A. and Pérez-García, V.M. (2017). A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications, PLOS ONE 12(8): 1-24, DOI: 10.1371/journal.pone.0179999.
[7] [7] Bressloff, P.C. (2013). Waves in Neural Media: From Single Neurons to Neural Fields, Springer, New York.
[8] [8] Fenichel, N. (1979). Geometric singular perturbations theory for ordinary differential equations, Journal of Differential Equations 31: 53-98, DOI: 10.1016/0022-0396(79)90152-9.
[9] [9] Fife, P.C. (1979). Mathematical Aspects of Reacting and Diffusing Systems, Springer, Berlin.
[10] [10] Gourley, S.A. and Bartuccelli, M.V. (2000). Existence and construction of travelling wavefront solutions of Fisher equations with fourth-order perturbations, Dynamics and Stability of Systems 15(3): 253-262, DOI: 10.1080/026811100418710.
[11] [11] Gugat, M. and Wintergerst, D. (2018). Transient flow in gas networks: Traveling waves, International Journal of Applied Mathematics and Computer Science 28(2): 341-348, DOI: 10.2478/amcs-2018-0025.
[12] [12] Henry, D. (1981). Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin/Heidelberg.
[13] [13] Joiner, M.C. and van der Kogel, A. (2019). Basic Clinical Radiobiology, CRC Press, Boca Raton.
[14] [14] Jones, C.K.R.T. (1995). Geometric singular perturbation theory, in R. Jonson (Ed), Dynamical Systems, Lecture Notes in Mathematics, Vol. 1609, Springer, Berlin/Heidelberg, pp. 44-118, DOI: 10.1007/BFb0095239.
[15] [15] Keles, G.E., Lamborn, K.R. and S. Berger, M. (2011). Low-grade hemispheric gliomas in adults: A critical review of extent of resection as a factor influencing outcome, Journal of Neurosurgery 95(5): 735-45, DOI:10.3171/jns.2001.95.5.0735.
[16] [16] Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85-106, DOI: 10.34768/amcs-2021-0007.
[17] [17] Murray, J.D. (1989). Mathematical Biology, Springer, Berlin.
[18] [18] Pallud, J., Blonski, M., Mandonnet, E., Audureau, E., Fontaine, D., Sanai, N., Bauchet, L., Peruzzi, P., Frénay, M., Colin, P., Guillevin, R., Bernier, V., Baron, M.-H., Guyotat, J., Duffau, H., Taillandier, L. and Capelle, L. (2013). Velocity of tumor spontaneous expansion predicts long-term outcomes for diffuse low-grade gliomas, Neuro-Oncology 15(5): 595-606.
[19] [19] Pallud, J., Capelle, L., Taillandier, L., Badoual, M., Duffau, H. and Mandonnet, E. (2013). The silent phase of diffuse low-grade gliomas. Is it when we missed the action?, Acta Neurochirurgica 155(12): 2237-2242.
[20] [20] Pallud, J., Taillandier, L., Capelle, L., Fontaine, D., Peyre, M., Ducray, F., Duffau, H. and Mandonnet, E. (2012). Quantitative morphological magnetic resonance imaging follow-up of low-grade glioma, Neurosurgery 71(3): 729-740.
[21] [21] Pouratian, N. and Schiff, D. (2010). Management of low-grade glioma, Current Neurology and Neuroscience Reports 10(3): 224-31.
[22] [22] Pérez-García, V.M., Bogdanska, M., Martínez-González, A., Belmonte-Beitia, J., Schucht, P. and Pérez-Romasanta, L.A. (2014). Delay effects in the response of low-grade gliomas to radiotherapy: A mathematical model and its therapeutical implications, Mathematical Medicine and Biology: A Journal of the IMA 32(3): 307-329.
[23] [23] Sakarunchai, I., Sangthong, R., Phuenpathom, N. and Phukaoloun, M. (2013). Free survival time of recurrence and malignant transformation and associated factors in patients with supratentorial low-grade gliomas, Journal of the Medical Association of Thailand 96(12): 1542-9.
[24] [24] Swanson, K., Rostomily, R. and Alvord, E. (2008). A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle, British Journal of Cancer 98(1): 113-119, DOI: 10.1038/sj.bjc.6604125.
[25] [25] Wang, C.H., Rockhill, J.K., Mrugala, M., Peacock, D.L., Lai, A., Jusenius, K., Wardlaw, J.M., Cloughesy, T., Spence, A.M., Rockne, R., Alvord Jr, E.C. and Swanson, K.R. (2009). Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Cancer Research 69(23): 9133-9140, DOI: 10.1158/0008-5472.CAN-08-3863.