Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_4_a2, author = {Prayitno, Agung and Indrawati, Veronica and Nilkhamhang, Itthisek}, title = {Distributed model reference control for synchronization of a vehicle platoon with limited output information and subject to periodical intermittent information}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {537--551}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a2/} }
TY - JOUR AU - Prayitno, Agung AU - Indrawati, Veronica AU - Nilkhamhang, Itthisek TI - Distributed model reference control for synchronization of a vehicle platoon with limited output information and subject to periodical intermittent information JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 537 EP - 551 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a2/ LA - en ID - IJAMCS_2023_33_4_a2 ER -
%0 Journal Article %A Prayitno, Agung %A Indrawati, Veronica %A Nilkhamhang, Itthisek %T Distributed model reference control for synchronization of a vehicle platoon with limited output information and subject to periodical intermittent information %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 537-551 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a2/ %G en %F IJAMCS_2023_33_4_a2
Prayitno, Agung; Indrawati, Veronica; Nilkhamhang, Itthisek. Distributed model reference control for synchronization of a vehicle platoon with limited output information and subject to periodical intermittent information. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 4, pp. 537-551. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a2/
[1] [1] Abou Harfouch, Y., Yuan, S. and Baldi, S. (2017). An adaptive switched control approach to heterogeneous platooning with intervehicle communication losses, IEEE Transactions on Control of Network Systems 5(3): 1434-1444, DOI: 10.1109/TCNS.2017.2718359.
[2] [2] Besselink, B. and Johansson, K.H. (2017). String stability and a delay-based spacing policy for vehicle platoons subject to disturbances, IEEE Transactions on Automatic Control 62(9): 4376-4391, DOI: 10.1109/TAC.2017.2682421.
[3] [3] Cavazza, B.H., Gandia, R.M., Antonialli, F., Zambalde, A.L., Nicolaï, I., Sugano, J.Y. and Neto, A. D.M. (2019). Management and business of autonomous vehicles: A systematic integrative bibliographic review, International Journal of Automotive Technology and Management 19(1-2): 31-54, DOI: 10.1504/IJATM.2019.098509.
[4] [4] Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang, Y.-H. (2019). Cooperative adaptive driving for platooning autonomous self driving based on edge computing, International Journal of Applied Mathematics and Computer Science 29(2): 213-225, DOI: 10.2478/amcs-2019-0016.
[5] [5] Di Bernardo, M., Salvi, A. and Santini, S. (2014). Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays, IEEE Transactions on Intelligent Transportation Systems 16(1): 102-112, DOI: 10.1109/TITS.2014.2328439.
[6] [6] Franzè, G., Lucia, W. and Tedesco, F. (2018). A distributed model predictive control scheme for leader-follower multi-agent systems, International Journal of Control 91(2): 369-382, DOI: 10.1080/00207179.2017.1282178.
[7] [7] Hamdi, H., Rodrigues, M., Rabaoui, B. and Braiek, N.B. (2021). A fault estimation and fault-tolerant control based sliding mode observer for LPV descriptor systems with time delay, International Journal of Applied Mathematics and Computer Science 31(2): 247-258, DOI: 10.34768/amcs-2021-0017.
[8] [8] Hu, J., Bhowmick, P., Arvin, F., Lanzon, A. and Lennox, B. (2020). Cooperative control of heterogeneous connected vehicle platoons: An adaptive leader-following approach, IEEE Robotics and Automation Letters 5(2): 977-984, DOI: 10.1109/LRA.2020.2966412.
[9] [9] Huang, N., Duan, Z. and Zhao, Y. (2014). Leader-following consensus of second-order non-linear multi-agent systems with directed intermittent communication, IET Control Theory & Applications 8(10): 782-795, DOI: 10.1049/iet-cta.2013.0565.
[10] [10] Huang, N., Duan, Z. and Zhao, Y. (2015). Consensus of multi-agent systems via delayed and intermittent communications, IET Control Theory & Applications 9(1): 62-73, DOI: 10.1049/iet-cta.2014.0729.
[11] [11] Jiang, Y., Zhang, Y. and Wang, S. (2018). Distributed leader-following consensus control based optimal design for multi-agent systems with intermittent communications, 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, pp. 5341-5345, DOI: 10.1109/CCDC.2018.8408060.
[12] [12] Jond, H.B. and Yıldız, A. (2022). Connected and automated vehicle platoon formation control via differential games, IET Intelligent Transport Systems 17(2): 312-326, DOI: 10.1049/itr2.12260.
[13] [13] Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171-183, DOI: 10.34768/amcs-2022-0013.
[14] [14] Lewis, F.L., Zhang, H., Hengster-Movric, K. and Das, A. (2013). Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer Science, London, DOI: 10.1007/978-1-4471-5574-4.
[15] [15] Li, S.E., Zheng, Y., Li, K., Wu, Y., Hedrick, J.K., Gao, F. and Zhang, H. (2017). Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities, IEEE Intelligent Transportation Systems Magazine 9(3): 46-58, DOI: 10.1109/MITS.2017.2709781.
[16] [16] Liu, Y., Xie, D. and Shi, L. (2020). Consensus of general linear multi-agent systems with intermittent communications, International Journal of Systems Science 51(12): 2293-2305, DOI: 10.1080/00207721.2020.1793236.
[17] [17] Long, X., Yu, S., Wang, Y. and Jin, L. (2014). Leader-follower consensus of multi-agent system with external disturbance based on integral sliding mode control, Proceedings of the 33rd Chinese Control Conference, Nanjing, China, pp. 1740-1745, DOI: 10.1109/ChiCC.2014.6896891.
[18] [18] Ozkan, M.F. and Ma, Y. (2021). Fuel-economical distributed model predictive control for heavy-duty truck platoon, 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, USA, pp. 1919-1926.
[19] [19] Prayitno, A. and Nilkhamhang, I. (2021). Distributed model reference adaptive control for vehicle platoons with uncertain dynamics, Engineering Journal 25(8): 173-185, DOI: 10.4186/ej.2021.25.8.173.
[20] [20] Prayitno, A. and Nilkhamhang, I. (2022). Distributed model reference control for cooperative tracking of vehicle platoons subjected to external disturbances and bounded leader input, International Journal of Control, Automation and Systems 20(6): 2067-2080, DOI: 10.1007/s12555-021-0171-4.
[21] [21] Qu, Z. (2009). Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, Springer, London, DOI: 10.1007/978-1-84882-325-9.
[22] [22] Song, K., Liu, F., Wang, C., Wang, P. and Min, G. (2020). Driving stability analysis using naturalistic driving data with random matrix theory, IEEE Access 8: 175521-175534.
[23] [23] Wang, F., Liu, Z. and Chen, Z. (2019). Leader-following consensus of second-order nonlinear multi-agent systems with intermittent position measurements, Science China Information Sciences 62(10): 1-16, DOI: 10.1007/s11432-018-9732-7.
[24] [24] Wang, Z., Wu, G. and Barth, M.J. (2017). Developing a distributed consensus-based cooperative adaptive cruise control system for heterogeneous vehicles with predecessor following topology, Journal of Advanced Transportation 2017: 1-16, DOI: 10.1155/2017/1023654.
[25] [25] Wijnbergen, P., Jeeninga, M. and Besselink, B. (2021). Nonlinear spacing policies for vehicle platoons: A geometric approach to decentralized control, Systems & Control Letters 153: 104954, DOI: 10.1016/j.sysconle.2021.104954.
[26] [26] Xie, Y. and Lin, Z. (2020). Global consensus of multi-agent systems with intermittent directed communication in the presence of actuator saturation, International Journal of Robust and Nonlinear Control 30(18): 8469-8484, DOI: 10.1002/rnc.5255.
[27] [27] Xu, C., Xu, H., Su, H. and Liu, C. (2020). Disturbance-observer based consensus of linear multi-agent systems with exogenous disturbance under intermittent communication, Neurocomputing 404: 26-33, DOI: 10.1016/j.neucom.2020.04.051.
[28] [28] Xu, H., Zeng, W. and Xu, C. (2021). Output consensus of multi-agent systems with linear dynamics via asynchronous intermittent control, 2021 40th Chinese Control Conference (CCC), Shanghai, China, pp. 5553-5558, DOI: 10.23919/CCC52363.2021.9549806.
[29] [29] Xu, Z., Zegers, F.M., Wu, B., Dixon, W. and Topcu, U. (2019). Controller synthesis for multi-agent systems with intermittent communication. a metric temporal logic approach, 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, pp. 1015-1022, DOI: 10.1109/ALLERTON.2019.8919727.
[30] [30] Yan, F., Dridi, M. and El Moudni, A. (2013). An autonomous vehicle sequencing problem at intersections: A genetic algorithm approach, International Journal of Applied Mathematics and Computer Science 23(1): 183-200, DOI: 10.2478/amcs-2013-0015.
[31] [31] Yan, M., Song, J., Yang, P. and Zuo, L. (2018). Neural adaptive sliding-mode control of a bidirectional vehicle platoon with velocity constraints and input saturation, Complexity 2018: 1-11, DOI: 10.1155/2018/1696851.
[32] [32] Zhang, H. and Lewis, F.L. (2012). Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica 48(7): 1432-1439, DOI: 10.1016/j.automatica.2012.05.008.
[33] [33] Zhang, H., Lewis, F.L. and Das, A. (2011). Optimal design for synchronization of cooperative systems: State feedback, observer and output feedback, IEEE Transactions on Automatic Control 56(8): 1948-1952, DOI: 10.1109/TAC.2011.2139510.
[34] [34] Zheng, Y., Bian, Y., Li, S. and Li, S.E. (2019). Cooperative control of heterogeneous connected vehicles with directed acyclic interactions, IEEE Intelligent Transportation Systems Magazine 13(2): 127-141, DOI: 10.1109/MITS.2018.2889654.
[35] [35] Zheng, Y., Li, S.E., Li, K., Borrelli, F. and Hedrick, J.K. (2016). Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies, IEEE Transactions on Control Systems Technology 25(3): 899-910, DOI: 10.1109/TCST.2016.2594588.
[36] [36] Zheng, Y., Li, S. E., Wang, J., Cao, D. and Li, K. (2015). Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies, IEEE Transactions on Intelligent Transportation Systems 17(1): 14-26, DOI: 10.1109/TITS.2015.2402153.