Zeroing the transfer matrix of the Roesser model of 2-D linear systems
International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 4, pp. 513-519.

Voir la notice de l'article provenant de la source Library of Science

Controllability, observability and the transfer matrix of the discrete 2-D Roesser model are analyzed. It is shown that the controllability of the Roesser model is invariant under state feedbacks and the observability under output feedbacks. Sufficient conditions are established for the zeroing of the transfer matrix of the Roesser model.
Keywords: controllability, observability, 2D Roesser model, state feedback, output feedback, zeroing of the transfer matrix
Mots-clés : sterowalność, obserwowalność, model Roessera dwuwymiarowy, sprzężenie od stanu, sprzężenie zwrotne
@article{IJAMCS_2023_33_4_a0,
     author = {Kaczorek, Tadeusz},
     title = {Zeroing the transfer matrix of the {Roesser} model of {2-D} linear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {513--519},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a0/}
}
TY  - JOUR
AU  - Kaczorek, Tadeusz
TI  - Zeroing the transfer matrix of the Roesser model of 2-D linear systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2023
SP  - 513
EP  - 519
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a0/
LA  - en
ID  - IJAMCS_2023_33_4_a0
ER  - 
%0 Journal Article
%A Kaczorek, Tadeusz
%T Zeroing the transfer matrix of the Roesser model of 2-D linear systems
%J International Journal of Applied Mathematics and Computer Science
%D 2023
%P 513-519
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a0/
%G en
%F IJAMCS_2023_33_4_a0
Kaczorek, Tadeusz. Zeroing the transfer matrix of the Roesser model of 2-D linear systems. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 4, pp. 513-519. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a0/

[1] [1] Fornasini, E. and Marchesini, G. (1978). Doubly indexed dynamical systems: State space models and structural properties, Mathematical Systems Theory 12(1): 59-72.

[2] [2] Kaczorek, T. (1989). Decomposition of the Roesser model and new conditions for the local controllability and local observability, International Journal of Control 49(1): 65-72.

[3] [3] Kaczorek, T. (1993). Linear Control Systems, Vol. 2,Wiley, New York.

[4] [4] Kaczorek, T. (1985). Two-Dimensional Linear Systems, Springer, Berlin.

[5] [5] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.

[6] [6] Kalman, R.E. (1960). On the general theory of control systems, Proceedings of the 1st IFAC Congress an Automatic Control, Moscow, USSR, pp. 481-492.

[7] [7] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht.

[8] [8] Kurek, J.E. (1985). The general state space model for a two-dimensional linear digital system, IEEE Transactions on Automatic Control 30(6): 1-10.

[9] [9] Roesser, R.P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control 20(1): 1-10.

[10] [10] Rogowski, K. (2020). General response formula for CFD pseudo-fractional 2D continuous linear systems described by the Roesser model, Symmetry 12(12): 1-12.

[11] [11] Ruszewski, A. (2019). Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences 29(3): 549-567.

[12] [12] Sajewski, L. (2016). Descriptor fractional discrete-time linear system with two different fractional orders and its solution, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(1): 15-20.