Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_4_a0, author = {Kaczorek, Tadeusz}, title = {Zeroing the transfer matrix of the {Roesser} model of {2-D} linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {513--519}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a0/} }
TY - JOUR AU - Kaczorek, Tadeusz TI - Zeroing the transfer matrix of the Roesser model of 2-D linear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 513 EP - 519 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a0/ LA - en ID - IJAMCS_2023_33_4_a0 ER -
%0 Journal Article %A Kaczorek, Tadeusz %T Zeroing the transfer matrix of the Roesser model of 2-D linear systems %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 513-519 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a0/ %G en %F IJAMCS_2023_33_4_a0
Kaczorek, Tadeusz. Zeroing the transfer matrix of the Roesser model of 2-D linear systems. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 4, pp. 513-519. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_4_a0/
[1] [1] Fornasini, E. and Marchesini, G. (1978). Doubly indexed dynamical systems: State space models and structural properties, Mathematical Systems Theory 12(1): 59-72.
[2] [2] Kaczorek, T. (1989). Decomposition of the Roesser model and new conditions for the local controllability and local observability, International Journal of Control 49(1): 65-72.
[3] [3] Kaczorek, T. (1993). Linear Control Systems, Vol. 2,Wiley, New York.
[4] [4] Kaczorek, T. (1985). Two-Dimensional Linear Systems, Springer, Berlin.
[5] [5] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
[6] [6] Kalman, R.E. (1960). On the general theory of control systems, Proceedings of the 1st IFAC Congress an Automatic Control, Moscow, USSR, pp. 481-492.
[7] [7] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht.
[8] [8] Kurek, J.E. (1985). The general state space model for a two-dimensional linear digital system, IEEE Transactions on Automatic Control 30(6): 1-10.
[9] [9] Roesser, R.P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control 20(1): 1-10.
[10] [10] Rogowski, K. (2020). General response formula for CFD pseudo-fractional 2D continuous linear systems described by the Roesser model, Symmetry 12(12): 1-12.
[11] [11] Ruszewski, A. (2019). Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences 29(3): 549-567.
[12] [12] Sajewski, L. (2016). Descriptor fractional discrete-time linear system with two different fractional orders and its solution, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(1): 15-20.