Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_3_a9, author = {Clempner, Julio B. and Poznyak, Alexander S.}, title = {Computing a mechanism for a {Bayesian} and partially observable {Markov} approach}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {463--478}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a9/} }
TY - JOUR AU - Clempner, Julio B. AU - Poznyak, Alexander S. TI - Computing a mechanism for a Bayesian and partially observable Markov approach JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 463 EP - 478 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a9/ LA - en ID - IJAMCS_2023_33_3_a9 ER -
%0 Journal Article %A Clempner, Julio B. %A Poznyak, Alexander S. %T Computing a mechanism for a Bayesian and partially observable Markov approach %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 463-478 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a9/ %G en %F IJAMCS_2023_33_3_a9
Clempner, Julio B.; Poznyak, Alexander S. Computing a mechanism for a Bayesian and partially observable Markov approach. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 3, pp. 463-478. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a9/
[1] [1] Asian, S. and Nie, X. (2014). Coordination in supply chains with uncertain demand and disruption risks: Existence, analysis, and insights, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(9): 1139-1154.
[2] [2] Athey, S. and Segal, I. (2013). An efficient dynamic mechanism, Econometrica 81(6): 2463-2485.
[3] [3] Atkeson, A. and Lucas, R. (1992). On efficient distribution with private information, Review of Economic Studies 59(3): 427-453.
[4] [4] Battaglini, M. (2005). Long-term contracting with Markovian consumers, American Economic Review 95(3): 637-658.
[5] [5] Bergemann, D. and Said, M. (2011). Dynamic auctions: A survey, in J.J. Cochran et al. (Eds), Wiley Encyclopedia of Operations Research and Management Science, John Wiley, Hoboken, pp. 1511-1522.
[6] [6] Board, S. (2007). Selling options, Journal of Economic Theory 136(1): 324-340.
[7] [7] Board, S. and Skrzypacz, A. (2016,). Revenue management with forward-looking buyers, Journal of Political Economy 124(4): 1046-1087.
[8] [8] Clempner, J.B. and Poznyak, A.S. (2015). Computing the strong Nash equilibrium for Markov chains games, Applied Mathematics and Computation 265(15): 911-927.
[9] [9] Clempner, J.B. and Poznyak, A.S. (2016). Convergence analysis for pure and stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria, Expert Systems with Applications 46(C): 474-484.
[10] [10] Clempner, J.B. and Poznyak, A.S. (2018a). A Tikhonov regularization parameter approach for solving Lagrange constrained optimization problems, Engineering Optimization 50(11): 1996-2012.
[11] [11] Clempner, J.B. and Poznyak, A.S. (2018b). A Tikhonov regularized penalty function approach for solving polylinear programming problems, Journal of Computational and Applied Mathematics 328: 267-286.
[12] [12] Courty, P. and Li, H. (2000). Sequential screening, Review of Economic Studies 67(4): 697-717.
[13] [13] Eső, P. and Szentes, B. (2007). Optimal information disclosure in auctions and the handicap auction, Review of Economic Studies 74(3): 705-731.
[14] [14] Gallien, J. (2006). Dynamic mechanism design for online commerce, Operations Research 54(2): 291-310.
[15] [15] Garg, D. and Narahari, Y. (2008). Mechanism design for single leader Stackelberg problems and application to procurement auction design, IEEE Transactions on Automation Science and Engineering 5(3): 377-393.
[16] [16] Gershkov, A. and Moldovanu, B. (2009). Dynamic revenue maximization with heterogenous objects: A mechanism design approach, American Economic Journal: Microeconomics 1(2): 168-198.
[17] [17] Hartline, J.D. and Lucier, B. (2015). Non-optimal mechanism design, American Economic Review 105(10): 3102-3124.
[18] [18] Jackson, M. (2003). Mechanism theory, in U. Derigs (Ed.), Optimization and Operations Research: An Insight into the Encyclopedia of Life Support Systems, EOLSS Publishers, Oxford, pp. 1-46.
[19] [19] Kakade, S., Lobel, I. and Nazerzadeh, H. (2013). Optimal dynamic mechanism design and the virtual-pivot mechanism, Operations Research 61(4): 837-854.
[20] [20] Khoury, B., Nejjari, F. and Puig, V. (2022). Reliability-aware zonotopic tube-based model predictive control of a drinking water network, International Journal of Applied Mathematics and Computer Science 32(2): 197-211, DOI: 10.34768/amcs-2022-0015.
[21] [21] Maskin, E. and Riley, J. (1984). Monopoly with incomplete information, Rand Journal of Economics 15(2): 171-196.
[22] [22] Myerson, R. (1981). Optimal auction design, Mathematics of Operations Research 6(1): 58-73.
[23] [23] Myerson, R.B. (1983). Mechanism design by an informed principal, Econometrica 51(6): 1767-1797.
[24] [24] Nocedal, J. and Wright, S. (2006). Numerical Optimization, Springer, New York.
[25] [25] Pavan, A., Segal, I. and Toikka, J. (2014). Dynamic mechanism design: A Myersonian approach, Econometrica 82(2): 601-653.
[26] [26] Zeifman, A., Satin, Y., Kryukova, A., Razumchik, R., Kiseleva, K. and Shilova, G. (2020). On three methods for bounding the rate of convergence for some continuous-time Markov chains, International Journal of Applied Mathematics and Computer Science 30(2): 251-266, DOI: 10.34768/amcs-2020-0020.