Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_3_a7, author = {Gong, Shiyin and Zheng, Meirong and Hu, Jing and Zhang, Anguo}, title = {Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {439--448}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a7/} }
TY - JOUR AU - Gong, Shiyin AU - Zheng, Meirong AU - Hu, Jing AU - Zhang, Anguo TI - Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 439 EP - 448 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a7/ LA - en ID - IJAMCS_2023_33_3_a7 ER -
%0 Journal Article %A Gong, Shiyin %A Zheng, Meirong %A Hu, Jing %A Zhang, Anguo %T Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 439-448 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a7/ %G en %F IJAMCS_2023_33_3_a7
Gong, Shiyin; Zheng, Meirong; Hu, Jing; Zhang, Anguo. Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 3, pp. 439-448. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a7/
[1] [1] Chen, L., Mei, J., Li, C. and Ma, G. (2020). Distributed leader-follower affine formation maneuver control for high-order multiagent systems, IEEE Transactions on Automatic Control 65(11): 4941-4948.
[2] [2] Defoort, M., Polyakov, A., Demesure, G., Djemai, M. and Veluvolu, K. (2015). Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics, IET Control Theory & Applications 9(14): 2165-2170.
[3] [3] El-Ferik, S., Hashim, H.A. and Lewis, F.L. (2018). Neuro-adaptive distributed control with prescribed performance for the synchronization of unknown nonlinear networked systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(12): 2135-2144.
[4] [4] Farrera, B., López-Estrada, F.-R., Chadli, M., Valencia-Palomo, G. and Gómez-Peñate, S. (2020). Distributed fault estimation of multi-agent systems using a proportional-integral observer: A leader-following application, International Journal of Applied Mathematics and Computer Science 30(3): 551-560, DOI: 10.34768/amcs-2020-0040.
[5] [5] Girard, A. (2015). Dynamic triggering mechanisms for event-triggered control, IEEE Transactions on Automatic Control 60(7): 1992-1997.
[6] [6] Girosi, F. and Poggio, T. (1990). Networks and the best approximation property, Biological Cybernetics 63: 169-176.
[7] [7] Henry, Y.W. (1912). On classes of summable functions and their Fourier series, Proceedings of the Royal Society A 87(594): 225-229.
[8] [8] Hong, H., Yu, W., Wen, G. and Yu, X. (2017). Distributed robust fixed-time consensus for nonlinear and disturbed multi-agent systems, IEEE Transactions on Systems Man & Cybernectis: Systems 47(7): 1464-1473.
[9] [9] Huang, J. and Wang, Q.-G. (2019). Event-triggered adaptive control of a class of nonlinear systems, ISA Transactions 94: 10-16.
[10] [10] Huang, N., Duan, Z., Wen, G. and Zhao, Y. (2016). Event-triggered consensus tracking of multi-agent systems with Lur’e nonlinear dynamics, International Journal of Control 89(5): 1-23.
[11] [11] Hui, Q., Haddad, W.M. and Bhat, S.P. (2008). Finite-time semistability and consensus for nonlinear dynamical networks, IEEE Transactions on Automatic Control 53(8): 1887-1900.
[12] [12] Li, J., Zhang, A. and Peng, C. (2023). Neuro-adaptive cooperative control for a class of high-order nonlinear multi-agent systems, Measurement and Control 56(5-6): 928-937.
[13] [13] Li, S.H., Du, H.B. and Lin, X.Z. (2011). Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica 47(8): 1706-1712.
[14] [14] Li, T.-S., Wang, D., Feng, G. and Tong, S.-C. (2010). A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 40(3): 915-927.
[15] [15] Liu, J., Zhang, Y., Yu, Y. and Sun, C. (2020). Fixed-time leader-follower consensus of networked nonlinear systems via event/self-triggered control, IEEE Transactions on Neural Networks and Learning Systems 31(11): 5029-5037.
[16] [16] Ni, W. and Cheng, D. (2010). Leader-following consensus of multi-agent systems under fixed and switching topologies, Systems and Control Letters 59(3): 209-217.
[17] [17] Peng, C., Zhang, A. and Li, J. (2021). Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties, International Journal of Applied Mathematics and Computer Science 31(4): 635-645, DOI: 10.34768/amcs-2021-0044.
[18] [18] Polyakov, A. (2012). Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control 57(8): 2106-2110.
[19] [19] Ren, B., Ge, S.S., Tee, K.P. and Lee, T.H. (2010). Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function, IEEE Transactions on Neural Networks 21(8): 1339-1345.
[20] [20] Wang, L. and Feng, X. (2010). Finite-time consensus problems for networks of dynamic agents, IEEE Transactions on Automatic Control 55(4): 950-955.
[21] [21] Wang, Q., Wang, Y. and Sun, C. (2016). Fixed-time consensus of multi-agent systems with directed and intermittent communications, Asian Journal of Control 19(1): 95-105.
[22] [22] Wu, Y., Gou, J., Hu, X. and Huang, Y. (2020). A new consensus theory-based method for formation control and obstacle avoidance of UAVs, Aerospace Science and Technology 107: 106332.
[23] [23] Yang, N. and Li, J. (2020). Distributed robust adaptive learning coordination control for high-order nonlinear multi-agent systems with input saturation, IEEE Access 8: 9953-9964.
[24] [24] Yang, X., Liao, L., Yang, Q., Sun, B. and Xi, J. (2021). Limited-energy output formation for multiagent systems with intermittent interactions, Journal of the Franklin Institute 358(13): 6462-6489.
[25] [25] Zegers, F.M., Deptula, P., Shea, J.M. and Dixon, W.E. (2022). Event/self-triggered approximate leader-follower consensus with resilience to byzantine adversaries, IEEE Transactions on Automatic Control 67(3): 1356-1370.
[26] [26] Zhang, A., Zhou, Y., Chen, Q. and Gong, S. (2018). Adaptive cooperative tracking control for a class of high-order nonaffine nonlinear multi-agent systems, Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, Shenyang, China, pp. 801-807.
[27] [27] Zhang, H., Yue, D., Yin, X., Hu, S. and Dou, C.x. (2016). Finite-time distributed event-triggered consensus control for multi-agent systems, Information Sciences 339: 132-142.
[28] [28] Zhou, H., Sui, S. and Tong, S. (2022). Finite-time adaptive fuzzy prescribed performance formation control for high-order nonlinear multi-agent systems based on event-triggered mechanism, IEEE Transactions on Fuzzy Systems 31(4): 1229-1239.
[29] [29] Zhou, J., Hu, Q. and Friswell, M.I. (2013). Decentralized finite time attitude synchronization control of satellite formation flying, Journal of Guidance Control and Dynamics 36(1): 185-195.
[30] [30] Zhu, Y., Guan, X., Luo, X. and Li, S. (2015). Finite-time consensus of multi-agent system via nonlinear event-triggered control strategy, IET Control Theory & Applications 9(17): 2548-2552.