Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_3_a6, author = {Gugat, Martin and Lazar, Martin}, title = {Optimal control problems without terminal constraints: {The} turnpike property with interior decay}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {429--438}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a6/} }
TY - JOUR AU - Gugat, Martin AU - Lazar, Martin TI - Optimal control problems without terminal constraints: The turnpike property with interior decay JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 429 EP - 438 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a6/ LA - en ID - IJAMCS_2023_33_3_a6 ER -
%0 Journal Article %A Gugat, Martin %A Lazar, Martin %T Optimal control problems without terminal constraints: The turnpike property with interior decay %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 429-438 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a6/ %G en %F IJAMCS_2023_33_3_a6
Gugat, Martin; Lazar, Martin. Optimal control problems without terminal constraints: The turnpike property with interior decay. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 3, pp. 429-438. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a6/
[1] [1] Dacorogna, B. (2008). Direct Methods in the Calculus of Variations, 2nd Edn, Springer, Berlin.
[2] [2] Damm, T., Grüne, L., Stieler, M. and Worthmann, K. (2014). An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM Journal on Control Optimization 52(3): 1935-1957.
[3] [3] Dorfman, R., Samuelson, P.A. and Solow, R.M. (1958). Linear Programming and Economic Analysis, McGraw-Hill, New York.
[4] [4] Faulwasser, T., Flaßkamp, K., Ober-Blöbaum, S., Schaller, M. and Worthmann, K. (2022). Manifold turnpikes, trims, and symmetries, Mathematics of Control, Signals, and Systems 34: 759-788.
[5] [5] Faulwasser, T., Korda, M., Jones, C.N. and Bonvin, D. (2017). On turnpike and dissipativity properties of continuous-time optimal control problems, Automatica 81: 297-304.
[6] [6] Grüne, L. and Guglielmi, R. (2018). Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM Journal on Control Optimization 56(2): 1282-1302.
[7] [7] Grüne, L. and M¨uller, M.A. (2016). On the relation between strict dissipativity and turnpike properties, Systems& Control Letters 90: 45-53.
[8] [8] Grüne, L., Schaller, M. and Schiela, A. (2020). Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations, Journal of Differential Equations 268(12): 7311-7341.
[9] [9] Gugat, M. (2021). On the turnpike property with interior decay for optimal control problems, Mathematics of Control Signals Systems 33: 237-258.
[10] [10] Gugat, M. (2022). Optimal boundary control of the wave equation: The finite-time turnpike phenomenon, Mathematical Reports 24(74)(1-2): 179-186.
[11] [11] Gugat, M. and Hante, F.M. (2019). On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems, SIAM Journal on Control Optimization 57(1): 264-289.
[12] [12] Gugat, M. and Lazar, M. (2023). Turnpike properties for partially uncontrollable systems, Automatica 149: 110844.
[13] [13] Gugat, M. and Leugering, G. (2017). Time delay in optimal control loops for wave equations, ESAIM: Control Optimisation and Calculus of Variations 23(1): 13-37.
[14] [14] Hernández-Santamaría, V., Lazar, M. and Zuazua, E. (2019). Greedy optimal control for elliptic problems and its application to turnpike problems, Numerische Mathematik 141(2): 455-493.
[15] [15] Mammadov, M.A. (2014). Turnpike theorem for an infinite horizon optimal control problem with time delay, SIAM Journal on Control Optimization 52(1): 420-438.
[16] [16] Porretta, A. and Zuazua, E. (2013). Long time versus steady state optimal control, SIAM Journal on Control Optimization 51(6): 4242-4273.
[17] [17] Rabah, R., Sklyar, G. and Barkhayev, P. (2017). Exact null controllability, complete stabilizability and continuous final observability of neutral type systems, International Journal of Applied Mathematics and Computer Science 27(3): 489-499, DOI: 10.1515/amcs-2017-0034.
[18] [18] Sakamoto, N. and Zuazua, E. (2021). The turnpike property in nonlinear optimal control-A geometric approach, Automatica 134: 109939.
[19] [19] Sontag, E.D. (1991). Kalman’s controllability rank condition: From linear to nonlinear, in A.C. Antoulas (Ed.) Mathematical System Theory, Springer, Berlin, pp. 453-462.
[20] [20] Trélat, E. and Zhang, C. (2018). Integral and measure-turnpike properties for infinite-dimensional optimal control systems, Mathematics of Control, Signals and Systems 30, Article no. 3.
[21] [21] Trélat, E., Zhang, C. and Zuazua, E. (2018). Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces, SIAM Journal on Control Optimization 56(2): 1222-1252.
[22] [22] Trélat, E. and Zuazua, E. (2015). The turnpike property in finite-dimensional nonlinear optimal control, Journal of Differential Equations 258(1): 81-114.
[23] [23] Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser, Basel.
[24] [24] Zaslavski, A.J. (2006). Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York.
[25] [25] Zaslavski, A.J. (2014). Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer, Cham.