Optimal control problems without terminal constraints: The turnpike property with interior decay
International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 3, pp. 429-438.

Voir la notice de l'article provenant de la source Library of Science

We show a turnpike result for problems of optimal control with possibly nonlinear systems as well as pointwise-in-time state and control constraints. The objective functional is of integral type and contains a tracking term which penalizes the distance to a desired steady state. In the optimal control problem, only the initial state is prescribed. We assume that a cheap control condition holds that yields a bound for the optimal value of our optimal control problem in terms of the initial data. We show that the solutions to the optimal control problems on the time intervals [0, T] have a turnpike structure in the following sense: For large T the contribution to the objective functional that comes from the subinterval [T/2, T], i.e., from the second half of the time interval [0, T], is at most of the order 1/T. More generally, the result holds for subintervals of the form [r T,T], where r ∈ (0, 1/2) is a real number. Using this result inductively implies that the decay of the integral on such a subinterval in the objective function is faster than the reciprocal value of a power series in T with positive coefficients. Accordingly, the contribution to the objective value from the final part of the time interval decays rapidly with a growing time horizon. At the end of the paper we present examples for optimal control problems where our results are applicable.
Keywords: optimal control, turnpike property, system with hyperbolic PDEs, interior decay
Mots-clés : sterowanie optymalne, układ hiperboliczny, rozkład wewnętrzny
@article{IJAMCS_2023_33_3_a6,
     author = {Gugat, Martin and Lazar, Martin},
     title = {Optimal control problems without terminal constraints: {The} turnpike property with interior decay},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {429--438},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a6/}
}
TY  - JOUR
AU  - Gugat, Martin
AU  - Lazar, Martin
TI  - Optimal control problems without terminal constraints: The turnpike property with interior decay
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2023
SP  - 429
EP  - 438
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a6/
LA  - en
ID  - IJAMCS_2023_33_3_a6
ER  - 
%0 Journal Article
%A Gugat, Martin
%A Lazar, Martin
%T Optimal control problems without terminal constraints: The turnpike property with interior decay
%J International Journal of Applied Mathematics and Computer Science
%D 2023
%P 429-438
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a6/
%G en
%F IJAMCS_2023_33_3_a6
Gugat, Martin; Lazar, Martin. Optimal control problems without terminal constraints: The turnpike property with interior decay. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 3, pp. 429-438. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a6/

[1] [1] Dacorogna, B. (2008). Direct Methods in the Calculus of Variations, 2nd Edn, Springer, Berlin.

[2] [2] Damm, T., Grüne, L., Stieler, M. and Worthmann, K. (2014). An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM Journal on Control Optimization 52(3): 1935-1957.

[3] [3] Dorfman, R., Samuelson, P.A. and Solow, R.M. (1958). Linear Programming and Economic Analysis, McGraw-Hill, New York.

[4] [4] Faulwasser, T., Flaßkamp, K., Ober-Blöbaum, S., Schaller, M. and Worthmann, K. (2022). Manifold turnpikes, trims, and symmetries, Mathematics of Control, Signals, and Systems 34: 759-788.

[5] [5] Faulwasser, T., Korda, M., Jones, C.N. and Bonvin, D. (2017). On turnpike and dissipativity properties of continuous-time optimal control problems, Automatica 81: 297-304.

[6] [6] Grüne, L. and Guglielmi, R. (2018). Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM Journal on Control Optimization 56(2): 1282-1302.

[7] [7] Grüne, L. and M¨uller, M.A. (2016). On the relation between strict dissipativity and turnpike properties, Systems& Control Letters 90: 45-53.

[8] [8] Grüne, L., Schaller, M. and Schiela, A. (2020). Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations, Journal of Differential Equations 268(12): 7311-7341.

[9] [9] Gugat, M. (2021). On the turnpike property with interior decay for optimal control problems, Mathematics of Control Signals Systems 33: 237-258.

[10] [10] Gugat, M. (2022). Optimal boundary control of the wave equation: The finite-time turnpike phenomenon, Mathematical Reports 24(74)(1-2): 179-186.

[11] [11] Gugat, M. and Hante, F.M. (2019). On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems, SIAM Journal on Control Optimization 57(1): 264-289.

[12] [12] Gugat, M. and Lazar, M. (2023). Turnpike properties for partially uncontrollable systems, Automatica 149: 110844.

[13] [13] Gugat, M. and Leugering, G. (2017). Time delay in optimal control loops for wave equations, ESAIM: Control Optimisation and Calculus of Variations 23(1): 13-37.

[14] [14] Hernández-Santamaría, V., Lazar, M. and Zuazua, E. (2019). Greedy optimal control for elliptic problems and its application to turnpike problems, Numerische Mathematik 141(2): 455-493.

[15] [15] Mammadov, M.A. (2014). Turnpike theorem for an infinite horizon optimal control problem with time delay, SIAM Journal on Control Optimization 52(1): 420-438.

[16] [16] Porretta, A. and Zuazua, E. (2013). Long time versus steady state optimal control, SIAM Journal on Control Optimization 51(6): 4242-4273.

[17] [17] Rabah, R., Sklyar, G. and Barkhayev, P. (2017). Exact null controllability, complete stabilizability and continuous final observability of neutral type systems, International Journal of Applied Mathematics and Computer Science 27(3): 489-499, DOI: 10.1515/amcs-2017-0034.

[18] [18] Sakamoto, N. and Zuazua, E. (2021). The turnpike property in nonlinear optimal control-A geometric approach, Automatica 134: 109939.

[19] [19] Sontag, E.D. (1991). Kalman’s controllability rank condition: From linear to nonlinear, in A.C. Antoulas (Ed.) Mathematical System Theory, Springer, Berlin, pp. 453-462.

[20] [20] Trélat, E. and Zhang, C. (2018). Integral and measure-turnpike properties for infinite-dimensional optimal control systems, Mathematics of Control, Signals and Systems 30, Article no. 3.

[21] [21] Trélat, E., Zhang, C. and Zuazua, E. (2018). Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces, SIAM Journal on Control Optimization 56(2): 1222-1252.

[22] [22] Trélat, E. and Zuazua, E. (2015). The turnpike property in finite-dimensional nonlinear optimal control, Journal of Differential Equations 258(1): 81-114.

[23] [23] Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser, Basel.

[24] [24] Zaslavski, A.J. (2006). Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York.

[25] [25] Zaslavski, A.J. (2014). Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer, Cham.