Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_3_a5, author = {Casalino, Gabriella and Castellano, Giovanna and Hryniewicz, Olgierd and Leite, Daniel and Opara, Karol and Radziszewska, Weronika and Kaczmarek-Majer, Katarzyna}, title = {Semi-supervised vs. supervised learning for mental health monitoring: {A} case study on bipolar disorder}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {419--428}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a5/} }
TY - JOUR AU - Casalino, Gabriella AU - Castellano, Giovanna AU - Hryniewicz, Olgierd AU - Leite, Daniel AU - Opara, Karol AU - Radziszewska, Weronika AU - Kaczmarek-Majer, Katarzyna TI - Semi-supervised vs. supervised learning for mental health monitoring: A case study on bipolar disorder JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 419 EP - 428 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a5/ LA - en ID - IJAMCS_2023_33_3_a5 ER -
%0 Journal Article %A Casalino, Gabriella %A Castellano, Giovanna %A Hryniewicz, Olgierd %A Leite, Daniel %A Opara, Karol %A Radziszewska, Weronika %A Kaczmarek-Majer, Katarzyna %T Semi-supervised vs. supervised learning for mental health monitoring: A case study on bipolar disorder %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 419-428 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a5/ %G en %F IJAMCS_2023_33_3_a5
Casalino, Gabriella; Castellano, Giovanna; Hryniewicz, Olgierd; Leite, Daniel; Opara, Karol; Radziszewska, Weronika; Kaczmarek-Majer, Katarzyna. Semi-supervised vs. supervised learning for mental health monitoring: A case study on bipolar disorder. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 3, pp. 419-428. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a5/
[1] [1] Alanazi, A. (2022). Using machine learning for healthcare challenges and opportunities, Informatics in Medicine Unlocked 30: 100924.
[2] [2] Antosik-Wójcińska, A.Z., Dominiak, M., Chojnacka, M., Kaczmarek-Majer, K., Opara, K.R., Radziszewska, W., Olwert, A. and Łukasz Świecicki (2020). Smartphone as a monitoring tool for bipolar disorder: A systematic review including data analysis, machine learning algorithms and predictive modelling, International Journal of Medical Informatics 138: 104131.
[3] [3] Ao, X., Luo, P., Ma, X., Zhuang, F., He, Q., Shi, Z. and Shen, Z. (2014). Combining supervised and unsupervised models via unconstrained probabilistic embedding, Information Sciences 257: 101-114.
[4] [4] Arevian, A.C., Bone, D., Malandrakis, N., Martinez, V.R., Wells, K.B., Miklowitz, D.J. and Narayanan, S. (2020). Clinical state tracking in serious mental illness through computational analysis of speech, PLoS ONE 15(1): e0225695.
[5] [5] Arshad, A., Riaz, S. and Jiao, L. (2019). Semi-supervised deep fuzzy c-mean clustering for imbalanced multi-class classification, IEEE Access 7: 28100-28112.
[6] [6] Basu, S., Banerjee, A. and Mooney, R. (2002). Semi-supervised clustering by seeding, Proceedings of the 19th International Conference on Machine Learning (ICML-2002), Sydney, Australia.
[7] [7] Bennett, K. and Demiriz, A. (1998). Semi-supervised support vector machines, in M. Kearns et al. (Eds), Advances in Neural Information Processing Systems, Vol. 11, MIT Press, Cambridge, pp. 368-374.
[8] [8] Bezdek, J.C. (2013). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York.
[9] [9] Bilenko, M., Basu, S. and Mooney, R.J. (2004). Integrating constraints and metric learning in semi-supervised clustering, Proceedings of the 21st International Conference on Machine Learning, Banff, Canada, p. 11.
[10] [10] Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (2017). Classification and Regression Trees, Routledge, New York.
[11] [11] Cai, J., Hao, J., Yang, H., Zhao, X. and Yang, Y. (2023). A review on semi-supervised clustering, Information Sciences 632: 164-200.
[12] [12] Casalino, G., Castellano, G., Galetta, F. and Kaczmarek-Majer, K. (2020). Dynamic incremental semi-supervised fuzzy clustering for bipolar disorder episode prediction, in A. Appice et al. (Eds), Discovery Science, DS 2020, Lecture Notes in Computer Science, Vol. 12323, Springer, Cham, pp. 79-93.
[13] [13] Dominiak, M., Kaczmarek-Majer, K., Antosik-Wojcinska, A.Z., Opara, K.R., Wojnar, M., Olwert, A., Radziszewska, W., Hryniewicz, O., Swiecicki, L. and Mierzejewski, P. (2022). Behavioural data collected from smartphones in the assessment of depressive and manic symptoms for bipolar disorder patients: Prospective observational study, Journal of Medical Internet Research 24(1): e28647.
[14] [14] Espinola, C.W., Gomes, J.C., Pereira, J.M.S. and dos Santos, W.P. (2021). Detection of major depressive disorder using vocal acoustic analysis and machine learning-An exploratory study, Research on Biomedical Engineering 37: 53-64.
[15] [15] Eyben, F., Weninger, F., Gross, F. and Schuller, B. (2013). Recent developments in openSMILE, the Munich open-source multimedia feature extractor, Proceedings of the 21st ACM International Conference on Multimedia, Barcelona, Spain, pp. 835-838.
[16] [16] Faurholt-Jepsen, M., Busk, J., Frost, M., Bardram, J.E., Vinberg, M. and Kessing, L.V. (2019). Objective smartphone data as a potential diagnostic marker of bipolar disorder, Australian & New Zealand Journal of Psychiatry 53(2): 119-128, PMID: 30387368.
[17] [17] Faurholt-Jepsen, M., Vinberg, M., Debel, S., Bardram, J.E. and Kessing, L.V. (2016). Behavioral activities collected through smartphones and the association with illness activity in bipolar disorder, International Journal of Methods in Psychiatric Research 25(4): 309-323.
[18] [18] Gomes, H.M., Grzenda, M., Mello, R., Read, J., Le Nguyen, M.H. and Bifet, A. (2022). A survey on semi-supervised learning for delayed partially labelled data streams, ACM Computing Surveys 55(4): 1-42.
[19] [19] González-Almagro, G., Peralta, D., De Poorter, E., Cano, J.-R. and García, S. (2023). Semi-supervised constrained clustering: An in-depth overview, ranked taxonomy and future research directions, arXiv: 2303.00522.
[20] [20] Grande, I., Berk, M., Birmaher, B. and Vieta, E. (2016). Bipolar disorder, The Lancet 387(10027): 1561-1572.
[21] [21] Grünerbl, A., Muaremi, A. and Osmani, V. (2015). Smartphone-based recognition of states and state changes in bipolar disorder patients, IEEE Journal of Biomedical and Health Informatics 19(1): 140-148.
[22] [22] Hryniewicz, O. and Kaczmarek-Majer, K. (2021). Possibilistic aggregation of inhomogeneous streams of data, 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, pp. 1-6, DOI: 10.1109/FUZZ45933.2021.9494583.
[23] [23] Kaczmarek-Majer, K., Casalino, G., Castellano, G., Dominiak, M., Hryniewicz, O., Kamińska, O., Vessio, G. and Díaz-Rodríguez, N. (2022a). Plenary: Explaining black-box models in natural language through fuzzy linguistic summaries, Information Sciences 614: 374-399.
[24] [24] Kaczmarek-Majer, K., Casalino, G., Castellano, G., Hryniewicz, O. and Dominiak, M. (2022b). Explaining smartphone-based acoustic data in bipolar disorder: Semi-supervised fuzzy clustering and relative linguistic summaries, Information Sciences 588: 174-195.
[25] [25] Kaczmarek-Majer, K., Casalino, G., Castellano, G., Leite, D. and Hryniewicz, O. (2022c). Fuzzy linguistic summaries for explaining online semi-supervised learning, 2022 IEEE 11th International Conference on Intelligent Systems, Warsaw, Poland, pp. 1-8.
[26] [26] Kamińska, O., Kaczmarek-Majer, K., Opara, K., Jakuczun, W., Dominiak, M., Antosik-Wójcińska, A., Święcicki, Ł. and Hryniewicz, O. (2019). Self-organizing maps using acoustic features for prediction of state change in bipolar disorder, in M. Marcos et al. (Eds), Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems, Springer, Berlin/Heidelberg, pp. 148-160.
[27] [27] Kamińska, O., Kaczmarek-Majer, K. and Hryniewicz, O. (2020). Acoustic feature selection with fuzzy clustering, self organizing maps and psychiatric assessments, Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, Lisbon, Portugal, pp. 342-355.
[28] [28] Kmita, K., Casalino, G., Castellano, G., Hryniewicz, O. and Kaczmarek-Majer, K. (2022). Confidence path regularization for handling label uncertainty in semi-supervised learning: Use case in bipolar disorder monitoring, 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Padua, Italy, pp. 1-8.
[29] [29] Kusy,M. and Zajdel, R. (2021). A weighted wrapper approach to feature selection, International Journal of Applied Mathematics and Computer Science 31(4): 685-696, DOI: 10.34768/amcs-2021-0047.
[30] [30] Lai, D.T.C. and Garibaldi, J.M. (2011). A comparison of distance-based semi-supervised fuzzy c-means clustering algorithms, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), Taipei, Taiwan, pp. 1580-1586.
[31] [31] Leite, D., Decker, L., Santana, M. and Souza, P. (2020). EGFC: Evolving Gaussian fuzzy classifier from never-ending semi-supervised data streams-With application to power quality disturbance detection and classification, 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, pp. 1-9.
[32] [32] Li, K., Cao, Z., Cao, L. and Zhao, R. (2009a). A novel semi-supervised fuzzy c-means clustering method, Chinese Control and Decision Conference, Guilin, China, pp. 3761-3765.
[33] [33] Li, Y.-F., Kwok, J.T. and Zhou, Z.-H. (2009b). Semi-supervised learning using label mean, Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Canada, pp. 633-640.
[34] [34] Low, D., Bentley, K. and Ghosh, S.K. (2020). Automated assessment of psychiatric disorders using speech: A systematic review, Laryngoscope Investigative Otolaryngology 315(1): 96-116.
[35] [35] Mai, D.S. and Ngo, L.T. (2015). Semi-supervised fuzzy c-means clustering for change detection from multispectral satellite image, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, pp. 1-8.
[36] [36] Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66.
[37] [37] Panek, D., Skalski, A., Gajda, J. and Tadeusiewicz, R. (2015). Acoustic analysis assessment in speech pathology detection, International Journal of Applied Mathematics and Computer Science 25(3): 631-643, DOI: 10.1515/amcs-2015-0046.
[38] [38] Pedrycz, W. and Waletzky, J. (1997). Fuzzy clustering with partial supervision., IEEE Transactions on Systems, Man and Cybernetics B: Cybernetics 27(5): 787-95.
[39] [39] Ruiz, D. and Finke, J. (2019). Lyapunov-based anomaly detection in preferential attachment networks, International Journal of Applied Mathematics and Computer Science 29(2): 363-373, DOI: 10.2478/amcs-2019-0027.
[40] [40] Vapnik, V. (2006). Estimation of Dependences Based on Empirical Data, Springer Berlin/Heidelberg.
[41] [41] Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods, 33rd Annual Meeting of the Association for Computational Linguistics, Cambridge, USA, pp. 189-196.
[42] [42] Zhou, D., Bousquet, O., Lal, T., Weston, J. and Schölkopf, B. (2003). Learning with local and global consistency, in S. Thrun et al. (Eds), Advances in Neural Information Processing Systems, MIT Press, Cambridge.
[43] [43] Zhu, X. and Ghahramani, Z. (2002). Learning from labeled and unlabeled data with label propagation, Report CMUCALD-02-107, Carnegie Mellon University, Pittsburgh.