Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_3_a4, author = {Parajdi, Lorand Gabriel and Precup, Radu and Haplea, Ioan \c{S}tefan}, title = {A method of lower and upper solutions for control problems and application to a model of bone marrow transplantation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {409--418}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a4/} }
TY - JOUR AU - Parajdi, Lorand Gabriel AU - Precup, Radu AU - Haplea, Ioan Ştefan TI - A method of lower and upper solutions for control problems and application to a model of bone marrow transplantation JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 409 EP - 418 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a4/ LA - en ID - IJAMCS_2023_33_3_a4 ER -
%0 Journal Article %A Parajdi, Lorand Gabriel %A Precup, Radu %A Haplea, Ioan Ştefan %T A method of lower and upper solutions for control problems and application to a model of bone marrow transplantation %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 409-418 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a4/ %G en %F IJAMCS_2023_33_3_a4
Parajdi, Lorand Gabriel; Precup, Radu; Haplea, Ioan Ştefan. A method of lower and upper solutions for control problems and application to a model of bone marrow transplantation. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 3, pp. 409-418. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a4/
[1] [1] Barbu, V. (2016). Differential Equations, Springer, Cham.
[2] [2] Coron, J.-M. (2007). Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136, American Mathematical Society, Providence.
[3] [3] DeConde, R., Kim, P.S., Levy, D. and Lee, P.P. (2005). Post-transplantation dynamics of the immune response to chronic myelogenous leukemia, Journal of Theoretical Biology 236(1): 39-59.
[4] [4] Foley, C. and Mackey, M.C. (2009). Dynamic hematological disease: A review, Journal of Mathematical Biology 58(1): 285-322.
[5] [5] Haplea, I. ¸S., Parajdi, L.G. and Precup, R. (2021). On the controllability of a system modeling cell dynamics related to leukemia, Symmetry 13(10): 1867.
[6] [6] Kelley, C.T. (1995). Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia.
[7] [7] Kim, P.S., Lee, P.P. and Levy, D. (2007). Mini-transplants for chronic myelogenous leukemia: A modeling perspective, in I. Queinnec (Ed.), Biology and Control Theory: Current Challenges, Lecture Notes in Control and Information Sciences, Vol. 357, Springer, Berlin, pp. 3-20.
[8] [8] Langtangen, H.P. and Mardal, K.A. (2019). Introduction to Numerical Methods for Variational Problems, Springer, Cham.
[9] [9] Parajdi, L.G. (2020). Stability of the equilibria of a dynamic system modeling stem cell transplantation, Ricerche di Matematica 69(2): 579-601.
[10] [10] Parajdi, L.G., Patrulescu, F.-O., Precup, R. and Haplea, I.Ş. (2023). Two numerical methods for solving a nonlinear system of integral equations of mixed Volterra-Fredholm type arising from a control problem related to leukemia, Journal of Applied Analysis & Computation, DOI: 10.11948/20220197, (online first).
[11] [11] Precup, R. (2002). Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht.
[12] [12] Precup, R. (2022). On some applications of the controllability principle for fixed point equations, Results in Applied Mathematics 13: 100236.
[13] [13] Precup, R., Dima, D., Tomuleasa, C., ¸Serban, M.-A. and Parajdi, L.-G. (2018). Theoretical models of hematopoietic cell dynamics related to bone marrow transplantation, in Atta-ur-Rahman and S. Anjum (Eds.), Frontiers in Stem Cell and Regenerative Medicine Research,Vol. 8, Bentham Science Publishers, Sharjah, pp. 202-241.
[14] [14] Precup, R., Şerban, M.-A. and Trif, D. (2013). Asymptotic stability for a model of cell dynamics after allogeneic bone marrow transplantation, Nonlinear Dynamics and Systems Theory 13(1): 79-92.
[15] [15] Precup, R., Şerban, M.-A., Trif, D. and Cucuianu, A. (2012). A planning algorithm for correction therapies after allogeneic stem cell transplantation, Journal of Mathematical Modelling and Algorithms 11(3): 309-323.
[16] [16] Precup, R., Trif, D., Şerban, M.-A. and Cucuianu, A. (2010). A mathematical approach to cell dynamics before and after allogeneic bone marrow transplantation, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity 8: 167-175.
[17] [17] Rahmani Doust, M.H. (2015). The efficiency of harvested factor: Lotka-Volterra predator-prey model, Caspian Journal of Mathematical Sciences 4(1): 51-59.