Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_3_a11, author = {Kandukuri, Usha Rani and Prakash, Allam Jaya and Patro, Kiran Kumar and Neelapu, Bala Chakravarthy and Tadeusiewicz, Ryszard and P{\l}awiak, Pawe{\l}}, title = {Constant {Q-transform-based} deep learning architecture for detection of obstructive sleep apnea}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {493--506}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a11/} }
TY - JOUR AU - Kandukuri, Usha Rani AU - Prakash, Allam Jaya AU - Patro, Kiran Kumar AU - Neelapu, Bala Chakravarthy AU - Tadeusiewicz, Ryszard AU - Pławiak, Paweł TI - Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 493 EP - 506 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a11/ LA - en ID - IJAMCS_2023_33_3_a11 ER -
%0 Journal Article %A Kandukuri, Usha Rani %A Prakash, Allam Jaya %A Patro, Kiran Kumar %A Neelapu, Bala Chakravarthy %A Tadeusiewicz, Ryszard %A Pławiak, Paweł %T Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 493-506 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a11/ %G en %F IJAMCS_2023_33_3_a11
Kandukuri, Usha Rani; Prakash, Allam Jaya; Patro, Kiran Kumar; Neelapu, Bala Chakravarthy; Tadeusiewicz, Ryszard; Pławiak, Paweł. Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 3, pp. 493-506. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_3_a11/
[1] [1] Abdar, M., Fahami, M.A., Rundo, L., Radeva, P., Frangi, A.F., Acharya, U.R., Khosravi, A., Lam, H.-K., Jung, A. and Nahavandi, S. (2022). Hercules: Deep hierarchical attentive multilevel fusion model with uncertainty quantification for medical image classification, IEEE Transactions on Industrial Informatics 19(1): 274-285.
[2] [2] Abdar, M., Khosravi, A., Islam, S.M.S., Acharya, U.R. and Vasilakos, A.V. (2022). The need for quantification of uncertainty in artificial intelligence for clinical data analysis: Increasing the level of trust in the decision-making process, IEEE Systems, Man, and Cybernetics Magazine 8(3): 28-40.
[3] [3] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R., Makarenkov, V. and Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Information Fusion 76: 243-297.
[4] [4] Abdar, M., Salari, S., Qahremani, S., Lam, H.-K., Karray, F., Hussain, S., Khosravi, A., Acharya, U.R., Makarenkov, V. and Nahavandi, S. (2023). UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with ensemble Monte Carlo dropout for COVID-19 detection, Information Fusion 90: 364-381.
[5] [5] Almutairi, H., Hassan, G.M. and Datta, A. (2021). Classification of obstructive sleep apnea from single-lead ECG signals using convolutional neural and long short term memory networks, Biomedical Signal Processing and Control 69: 102906.
[6] [6] Aydemir, E., Tuncer, T. and Dogan, S. (2020). A tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method, Medical Hypotheses 134: 109519.
[7] [7] Balim, M.A., Hanilc¸i, C. and Acir, N. (2021). Motor imagery signal classification using constant-Q transform for BCI applications, 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, pp. 1306-1310.
[8] [8] Baygin, M., Barua, P.D., Chakraborty, S., Tuncer, I., Dogan, S., Palmer, E.E., Tuncer, T., Kamath, A.P., Ciaccio, E.J. and Acharya, U.R. (2023). CCPNet136: Automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals, Physiological Measurement 44(3): 035008-035018.
[9] [9] Bo, H., Li, H., Ma, L. and Yu, B. (2014). A constant q transform based approach for robust EEG spectral analysis, 2014 International Conference on Audio, Language and Image Processing, Shanghai, China, pp. 58-63.
[10] [10] Brown, J.C. (1991). Calculation of a constant Q spectral transform, The Journal of the Acoustical Society of America 89(1): 425-434.
[11] [11] Bsoul, M., Minn, H. and Tamil, L. (2010). Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG, IEEE Transactions on Information Technology in Biomedicine 15(3): 416-427.
[12] [12] Chang, H.-Y., Yeh, C.-Y., Lee, C.-T. and Lin, C.-C. (2020). A sleep apnea detection system based on a one-dimensional deep convolution neural network model using single-lead electrocardiogram, Sensors 20(15): 4157.
[13] [13] Chen, L., Zhang, X. and Song, C. (2014). An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram, IEEE Transactions on Automation Science and Engineering 12(1): 106-115.
[14] [14] Dey, D., Chaudhuri, S. and Munshi, S. (2018). Obstructive sleep apnea detection using convolutional neural network based deep learning framework, Biomedical Engineering Letters 8(1): 95-100.
[15] [15] Dogan, A., Akay, M., Barua, P.D., Baygin, M., Dogan, S., Tuncer, T., Dogru, A.H. and Acharya, U.R. (2021). PrimePatNet87: Prime pattern and tunable Q-factor wavelet transform techniques for automated accurate EEG emotion recognition, Computers in Biology and Medicine 138: 104867.
[16] [16] Dogan, S. and Tuncer, T. (2021). A novel statistical decimal pattern-based surface electromyogram signal classification method using tunable Q-factor wavelet transform, Soft Computing 25: 1085-1098.
[17] [17] Erdenebayar, U., Kim, Y.J., Park, J.-U., Joo, E.Y. and Lee, K.-J. (2019). Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram, Computer Methods and Programs in Biomedicine 180: 105001.
[18] [18] Fatimah, B., Singh, P., Singhal, A. and Pachori, R.B. (2020). Detection of apnea events from ECG segments using Fourier decomposition method, Biomedical Signal Processing and Control 61: 102005.
[19] [19] Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K. and Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation 101(23): e215-e220.
[20] [20] Gupta, S., Cepeda-Valery, B., Romero-Corral, A., Shamsuzzaman, A., Somers, V.K. and Pressman, G.S. (2012). Association between QRS duration and obstructive sleep apnea, Journal of Clinical Sleep Medicine 8(6): 649-654.
[21] [21] Hammad, M., Abd El-Latif, A.A., Hussain, A., Abd El-Samie, F.E., Gupta, B.B., Ugail, H. and Sedik, A. (2022). Deep learning models for arrhythmia detection in IoT healthcare applications, Computers and Electrical Engineering 100: 108011.
[22] [22] Hammad, M., Iliyasu, A.M., Subasi, A., Ho, E.S. and Abd El-Latif, A.A. (2020). A multitier deep learning model for arrhythmia detection, IEEE Transactions on Instrumentation and Measurement 70: 1-9.
[23] [23] Hassan, A.R. and Haque, M.A. (2017). An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting, Neurocomputing 235: 122-130.
[24] [24] Jackowska-Zduniak, B. (2022). Stochastic models of the slow/fast type of atrioventricular nodal reentrant tachycardia and tachycardia with conduction aberration, International Journal of Applied Mathematics and Computer Science 32(3): 429-440, DOI: 10.34768/amcs-2022-0031.
[25] [25] Jayaraman, T. and Chinnusamy, G.S. (2022). Performance analysis of a dual stage deep rain streak removal convolution neural network module with a modified deep residual dense network, International Journal of Applied Mathematics and Computer Science 32(1): 111-123, DOI: 10.34768/amcs-2022-0009.
[26] [26] Khalil, M. and Rifaie, O. (1998). Electrocardiographic changes in obstructive sleep apnoea syndrome, Respiratory Medicine 92(1): 25-27.
[27] [27] Khandoker, A.H., Gubbi, J. and Palaniswami, M. (2009). Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings, IEEE Transactions on Information Technology in Biomedicine 13(6): 1057-1067.
[28] [28] Kompa, B., Snoek, J. and Beam, A.L. (2021). Second opinion needed: Communicating uncertainty in medical machine learning, NPJ Digital Medicine 4(1): 4.
[29] [29] Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85-106, DOI: 10.34768/amcs-2021-0007.
[30] [30] Kumar, T.S. and Kanhangad, V. (2018). Gabor filter-based one-dimensional local phase descriptors for obstructive sleep apnea detection using single-lead ECG, IEEE Sensors Letters 2(1): 1-4.
[31] [31] Lin, R., Lee, R.-G., Tseng, C.-L., Zhou, H.-K., Chao, C.-F. and Jiang, J.-A. (2006). A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks, Biomedical Engineering: Applications, Basis and Communications 18(03): 138-143.
[32] [32] Mateo, C., and Talavera, J.A. (2020). Bridging the gap between the short-time Fourier transform (STFT), wavelets, the constant-Q transform and multi-resolution STFT, Signal, Image and Video Processing 14(8): 1535-1543.
[33] [33] Mashrur, F.R., Islam, M.S., Saha, D.K., Islam, S.R. and Moni, M.A. (2021). SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals, Computers in Biology and Medicine 134: 104532.
[34] [34] Nishad, A., Pachori, R.B. and Acharya, U.R. (2018). Application of TQWT based filter-bank for sleep apnea screening using ECG signals, Journal of Ambient Intelligence and Humanized Computing, DOI: 10.1007/s12652-018-0867-3.
[35] [35] Nixon, G.M. and Brouillette, R.T. (2002). Diagnostic techniques for obstructive sleep apnea: Is polysomnography necessary?, Paediatric Respiratory Reviews 3(1): 18-24.
[36] [36] Patro, K.K., Allam, J.P., Hammad, M., Tadeusiewicz, R. and Pławiak, P. (2023). SCovNet: A skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19, Biocybernetics and Biomedical Engineering 43(1): 352-368.
[37] [37] Patro, K.K., Prakash, A.J., Samantray, S., Pławiak, J., Tadeusiewicz, R. and Pławiak, P. (2022). A hybrid approach of a deep learning technique for real-time ECG beat detection, International Journal of Applied Mathematics and Computer Science 32(3): 455-465, DOI: 10.34768/amcs-2022-0033.
[38] [38] Penzel, T., Moody, G.B., Mark, R.G., Goldberger, A.L. and Peter, J.H. (2000). The apnea-ECG database, Computers in Cardiology 2000, Cambridge, USA, Vol. 27, pp. 255-258.
[39] [39] Prakash, A.J., Patro, K.K., Hammad, M., Tadeusiewicz, R. and Pławiak, P. (2022). BAED: A secured biometric authentication system using ECG signal based on deep learning techniques, Biocybernetics and Biomedical Engineering 42(4): 1081-1093.
[40] [40] Psaros, A.F., Meng, X., Zou, Z., Guo, L. and Karniadakis, G.E. (2023). Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons, Journal of Computational Physics 477: 111902.
[41] [41] Ramar, K. and Guilleminault, C. (2008). Sleep apnea (central and obstructive), in H.R. Smith et al. (Eds), Sleep Medicine, Cambridge University Press, Cambridge, pp. 129-156.
[42] [42] Shen, Q., Qin, H., Wei, K. and Liu, G. (2021). Multiscale deep neural network for obstructive sleep apnea detection using RR interval from single-lead ECG signal, IEEE Transactions on Instrumentation and Measurement 70: 1-13.
[43] [43] Singh, S.A. and Majumder, S. (2019). A novel approach OSA detection using single-lead ECG scalogram based on deep neural network, Journal of Mechanics in Medicine and Biology 19(04): 1950026.
[44] [44] Wang, T., Lu, C. and Shen, G. (2019a). Detection of sleep apnea from single-lead ECG signal using a time window artificial neural network, BioMed Research International 2019: 9768072.
[45] [45] Wang, T., Lu, C., Shen, G. and Hong, F. (2019b). Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network, PeerJ 7: e7731.
[46] [46] Zarei, A. and Asl, B.M. (2018). Automatic detection of obstructive sleep apnea using wavelet transform and entropy-based features from single-lead ECG signal, IEEE Journal of Biomedical and Health Informatics 23(3): 1011-1021.
[47] [47] Zarei, A. and Asl, B.M. (2020). Performance evaluation of the spectral autocorrelation function and autoregressive models for automated sleep apnea detection using single-lead ECG signal, Computer Methods and Programs in Biomedicine 195: 105626.