Exact approaches to late work scheduling on unrelated machines
International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 2, pp. 285-295.

Voir la notice de l'article provenant de la source Library of Science

We consider the scheduling problem on unrelated parallel machines in order to minimize the total late work. Since the problem is NP-hard, we propose a mathematical model and two dedicated exact approaches for solving it, based on the branching and bounding strategy and on enumerating combined with a dynamic programming algorithm. The time efficiencies of all three approaches are evaluated through computational experiments.
Keywords: late work scheduling, unrelated machine, mathematical model, branch algorithm, bound algorithm, dynamic programming
Mots-clés : planowanie pracy, model matematyczny, algorytm podziału, algorytm ograniczeń, programowanie dynamiczne
@article{IJAMCS_2023_33_2_a8,
     author = {Liu, Xinbo and Wang, Wen and Chen, Xin and Sterna, Malgorzata and Blazewicz, Jacek},
     title = {Exact approaches to late work scheduling on unrelated machines},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {285--295},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a8/}
}
TY  - JOUR
AU  - Liu, Xinbo
AU  - Wang, Wen
AU  - Chen, Xin
AU  - Sterna, Malgorzata
AU  - Blazewicz, Jacek
TI  - Exact approaches to late work scheduling on unrelated machines
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2023
SP  - 285
EP  - 295
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a8/
LA  - en
ID  - IJAMCS_2023_33_2_a8
ER  - 
%0 Journal Article
%A Liu, Xinbo
%A Wang, Wen
%A Chen, Xin
%A Sterna, Malgorzata
%A Blazewicz, Jacek
%T Exact approaches to late work scheduling on unrelated machines
%J International Journal of Applied Mathematics and Computer Science
%D 2023
%P 285-295
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a8/
%G en
%F IJAMCS_2023_33_2_a8
Liu, Xinbo; Wang, Wen; Chen, Xin; Sterna, Malgorzata; Blazewicz, Jacek. Exact approaches to late work scheduling on unrelated machines. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 2, pp. 285-295. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a8/

[1] [1] Abasian, F., Ranjbar, M., Salari, M., Davari, M. and Khatami, S.M. (2014). Minimizing the total weighted late work in scheduling of identical parallel processors with communication delays, Applied Mathematical Modelling 38(15): 3975-3986.

[2] [2] Afzalirad, M. and Rezaeian, J. (2016). Design of high-performing hybrid meta-heuristics for unrelated parallel machine scheduling with machine eligibility and precedence constraints, Engineering Optimization 48(4): 706-726.

[3] [3] Błażewicz, J. (1984). Scheduling preemptible tasks on parallel processors with information loss, Technique et Science Informatiques 3(6): 415-420.

[4] [4] Błażewicz, J., Ecker, K.H., Pesch, E., Sterna, M., Schmidt, G. and Weglarz, J. (2019). Handbook on Scheduling. From Theory to Practice (2nd Edn), Springer, Berlin/Heidelberg/New York.

[5] [5] Błażewicz, J., Pesch, E., Sterna, M. and Werner, F. (2005). The two-machine flow-shop problem with weighted late work criterion and common due date, European Journal of Operational Research 165(2): 408-415.

[6] [6] Błażewicz, J., Pesch, E., Sterna, M. and Werner, F. (2007). A note on the two machine job shop with the weighted late work criterion, Journal of Scheduling 10(2): 87-95.

[7] [7] Chen, X., Liang, Y., Sterna, M., Wang, W. and Błażewicz, J. (2020a). Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date, European Journal of Operational Research 284(1): 67-74.

[8] [8] Chen, X., Miao, Q., Lin, B.M., Sterna, M. and Blazewicz, J. (2022). Two-machine flow shop scheduling with a common due date to maximize total early work, European Journal of Operational Research 300(2): 504-511.

[9] [9] Chen, X., Sterna, M., Han, X. and Błażewicz, J. (2016). Scheduling on parallel identical machines with late work criterion: Offline and online cases, Journal of Scheduling 19(6): 729-736.

[10] [10] Chen, X., Wang, W., Xie, P., Zhang, X., Sterna, M. and Błażewicz, J. (2020b). Exact and heuristic algorithms for scheduling on two identical machines with early work maximization, Computers Industrial Engineering 144: 106449.

[11] [11] Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman Co, New York.

[12] [12] Graham, R., Lawler, E., Lenstra, J. and Kan, A.R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics 5: 287-326.

[13] [13] Janiak, A., Kwiatkowski, T. and Lichtenstein, M. (2013). Scheduling problems with a common due window assignment: A survey, International Journal of Applied Mathematics and Computer Science 23(1): 231-241, DOI: 10.2478/amcs-2013-0018.

[14] [14] Lin, B.M.T., Lin, F.-C. and Lee, R.C.T. (2006). Two-machine flow-shop scheduling to minimize total late work, Engineering Optimization 38(4): 501-509.

[15] [15] Liu, Z., Yu, B., Zhang, L. and Wang, W. (2022). A hybrid control strategy for a dynamic scheduling problem in transit networks, International Journal of Applied Mathematics and Computer Science 32(4): 553-567, DOI: 10.34768/amcs-2022-0039.

[16] [16] Potts, C.N. and Van Wassenhove, L.N. (1992). Single machine scheduling to minimize total late work, Operations Research 40(3): 586-595.

[17] [17] Sterna, M. (2011). A survey of scheduling problems with late work criteria, Omega 39(2): 120-129.

[18] [18] Sterna, M. (2021). Late and early work scheduling: A survey, Omega 104: 102453.

[19] [19] Sterna, M. and Czerniachowska, K. (2017). Polynomial time approximation scheme for two parallel machines scheduling with a common due date to maximize early work, Journal of Optimization Theory Applications 174(3): 927-944.

[20] [20] Wang, W., Chen, X., Musial, J. and Blazewicz, J. (2020). Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion, International Journal of Applied Mathematics and Computer Science 30(3): 573-584, DOI: 10.34768/amcs-2020-0042.