Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_2_a6, author = {Gamino-Carranza, Arturo}, title = {Binary associative memories with complemented operations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {249--265}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a6/} }
TY - JOUR AU - Gamino-Carranza, Arturo TI - Binary associative memories with complemented operations JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 249 EP - 265 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a6/ LA - en ID - IJAMCS_2023_33_2_a6 ER -
%0 Journal Article %A Gamino-Carranza, Arturo %T Binary associative memories with complemented operations %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 249-265 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a6/ %G en %F IJAMCS_2023_33_2_a6
Gamino-Carranza, Arturo. Binary associative memories with complemented operations. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 2, pp. 249-265. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a6/
[1] [1] Barkalov, A., Titarenko, L. and Mazurkiewicz, M. (2022). Improving the LUT count for Mealy FSMs with transformation of output collections, International Journal of Applied Mathematics and Computer Science 32(3): 479-494, DOI: 10.34768/amcs-2022-0035.
[2] [2] Chung, F.-L. and Lee, T. (1994). Towards a high capacity fuzzy associative memory model, Proceedings of the 1994 IEEE International Conference on Neural Networks (ICNN’94), Florida, USA, Vol. 3, pp. 1595-1599, DOI: 10.1109/ICNN.1994.374394.
[3] [3] Feng, N., Cao, X., Li, S., Ao, L. and Wang, S. (2009). A new method of morphological associative memories, Emerging Intelligent Computing Technology and Applications, with Aspects of Artificial Intelligence, ICIC 2009, Ulsan, South Korea, pp. 407-416, DOI: 10.1007/978-3-642-04020-7 43.
[4] [4] Feng, N.-Q., Tian, Y., Wang, X.-F., Song, L.-M., Fan, H.-J. and Shuang-Xi, W. (2015). Logarithmic and exponential morphological associative memories, Journal of Software 26(7): 1662-1674, DOI: 10.13328/j.cnki.jos.004620.
[5] [5] Feng, N. and Yao, Y. (2016). No rounding reverse fuzzy morphological associative memories, Neural Network World 26(6): 571-587, DOI: 10.14311/NNW.2016.26.033.
[6] [6] Gamino-Carranza, A. (2022). Binary associative memories, https://github.com/arturogam/Binary-Associative-Memories, (programming code).
[7] [7] Hassoun, M.H. (1993). Associative Neural Memories: Theory and Implementation, Oxford University Press, Inc., New York.
[8] [8] Hattori, M., Fukui, A. and Ito, H. (2002). A fast method of constructing kernel patterns for morphological associative memory, 9th International Conference on Neural Information Processing, ICONI 02, Singapore, pp. 1058-1063, DOI: 10.1109/ICONIP.2002.1198222.
[9] [9] Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the United States of America 79(8): 2554-2558, DOI: 10.1073/pnas.79.8.2554.
[10] [10] Ishi, S., Fukumizu, K. and Watanabe, S. (1996). A network of chaotic elements for information processing, Neural Networks 9(1): 25-40, DOI: 10.1016/0893-6080(95)00100-X.
[11] [11] Kosko, B. (1991). Fuzzy associative memories, Proceedings of the 2nd Joint Technology Workshop on Neural Networks and Fuzzy Logic, Houston, USA, pp. 3-58.
[12] [12] Lee, G. and Farhat, N.H. (2001). Parametrically coupled sine map networks, International Journal of Bifurcation and Chaos 11(07): 1815-1834, DOI: 10.1142/S0218127401003048.
[13] [13] Liu, P. (1999). The fuzzy associative memory of max-min fuzzy neural network with threshold, Fuzzy Sets and Systems 107(2): 147-157, DOI: 10.1016/S0165-0114(97)00352-7.
[14] [14] McEliece, R., Posner, E., Rodemich, E. and Venkatesh, S. (1987). The capacity of the Hopfield associative memory, IEEE Transactions on Information Theory 33(4): 461-482, DOI: 10.1109/TIT.1987.1057328.
[15] [15] Mustafa, A.A. (2018). Probabilistic binary similarity distance for quick binary image matching, IET Image Processing 12(10): 1844-1856, DOI: 10.1049/iet-ipr.2017.1333.
[16] [16] Rani, S.S., Rao, N. and Vatsal, S. (2018). Review on neural networks associative memory models, International Journal of Pure and Applied Mathematics 120(6): 3143-3154.
[17] [17] Ritter, G.X., Sussner, P. and Díaz de León, J.L. (1998). Morphological associative memories, IEEE Transactions on Neural Networks 2(9): 281-293, DOI: 10.1109/72.661123.
[18] [18] Ritter, G.X. and Urcid, G. (2021). Introduction to Lattice Algebra. With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks, Chapman and Hall/CRC, Boca Raton.
[19] [19] Salgado-Ramírez, J.C., Vianney Kinani, J.M., Cendejas-Castro, E.A., Rosales-Silva, A.J., Ramos-Díaz, E. and Díaz-de Léon-Santiago, J.L. (2022). New model of heteroasociative min memory robust to acquisition noise, Mathematics 10(148): 2-35, DOI: 10.3390/math10010148.
[20] [20] Sussner, P. (2000). Observations on morphological associative memories and the kernel method, Neurocomputing 31(1-4): 167-183, DOI: 10.1016/S0925-2312(99)00176-9.
[21] [21] Sussner, P. and Valle, M.E. (2006). Implicative fuzzy associative memories, IEEE Transactions on Fuzzy Systems 14(6): 793-807, DOI: 10.1109/TFUZZ.2006.879968.
[22] [22] Tikhonenko, O., Ziółkowski, M. and Kempa, W.M. (2021). Queueing systems with random volume customers and a sectorized unlimited memory buffer, International Journal of Applied Mathematics and Computer Science 31(3): 471-486, DOI: 10.34768/amcs-2021-0032.
[23] [23] Urcid, G. and Ritter, G.X. (2007). Noise masking for pattern recall using a single lattice matrix associative memory, in V.G. Kaburlasos and G.X. Ritter (Eds), Computational Intelligence Based on Lattice Theory, Springer, Berlin/Heidelberg, pp. 81-100, DOI: 10.1007/978-3-540-72687-6_5.
[24] [24] Wang, S. and Lu, H. (2004). On new fuzzy morphological associative memories, IEEE Transactions on Fuzzy Systems 12(3): 316-323, DOI: 10.1109/TFUZZ.2004.825977.
[25] [25] Wang, T. and Jia, N. (2017). A GCM neural network using cubic logistic map for information processing, Neural Computing and Applications 28(7): 1891-1903, DOI: 10.1007/s00521-016-2407-4.
[26] [26] Wang, T., Jia, N. and Wang, K. (2012). A novel GCM chaotic neural network for information processing, Communications in Nonlinear Science and Numerical Simulation 17(12): 4846-4855, DOI: 10.1016/j.cnsns.2012.05.011.
[27] [27] Xia, G., Tang, Z. and Li, Y. (2004). Hopfield neural network with hysteresis for maximum cut problem, Neural Information Processing-Letters and Reviews 4(2): 19-26.
[28] [28] Xiao, P., Yang, F. and Yu, Y. (1997). Max-min encoding learning algorithm for fuzzy max-multiplication associative memory networks, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, USA, pp. 3674-3679, DOI: 10.1109/ICSMC.1997.633240.
[29] [29] Zhang, S., Lin, S. and Chen, C. (1993). Improved model of optical fuzzy associative memory, Optics Letters 18(21): 1837–1839, DOI: 10.1364/OL.18.001837.
[30] [30] Zheng, L. and Tang, X. (2005). A new parameter control method for S-GCM, Pattern Recognition Letters 26(7): 939-942, DOI: 10.1016/j.patrec.2004.09.041.