Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_2_a5, author = {Piegat, Andrzej and Pluci\'nski, Marcin}, title = {A realistic tolerant solution of a system of interval linear equations with the use of multidimensional interval arithmetic}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {229--247}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a5/} }
TY - JOUR AU - Piegat, Andrzej AU - Pluciński, Marcin TI - A realistic tolerant solution of a system of interval linear equations with the use of multidimensional interval arithmetic JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 229 EP - 247 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a5/ LA - en ID - IJAMCS_2023_33_2_a5 ER -
%0 Journal Article %A Piegat, Andrzej %A Pluciński, Marcin %T A realistic tolerant solution of a system of interval linear equations with the use of multidimensional interval arithmetic %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 229-247 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a5/ %G en %F IJAMCS_2023_33_2_a5
Piegat, Andrzej; Pluciński, Marcin. A realistic tolerant solution of a system of interval linear equations with the use of multidimensional interval arithmetic. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 2, pp. 229-247. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a5/
[1] [1] Alamanda, S. and Boddeti, K. (2021). Relative distance measure arithmetic-based available transfer capability calculation with uncertainty in wind power generation, International Transactions on Electrical Energy Systems 31(11): e13112.
[2] [2] Barth, W. and Nuding, E. (1974). Optimale lösung von intervallgleichungssystemen, Computing 12(2): 117-125.
[3] [3] Boukezzoula, R., Foulloy, L., Coquin, D. and Galichet, S. (2019). Gradual interval arithmetic and fuzzy interval arithmetic, Granular Computing 6(2): 451-471.
[4] [4] Boukezzoula, R., Galichet, S., Foulloy, L. and Elmasry, M. (2014). Extended gradual interval (EGI) arithmetic and its application to gradual weighted averages, Fuzzy Sets and Systems 257: 67-84.
[5] [5] Dubois, D. and Prade, H. (2008). Gradual elements in a fuzzy set, Soft Computing 12: 165-175.
[6] [6] Dymova, L. (2011). Soft Computing in Economics and Finance, Springer Verlag, Berlin/Heidelberg.
[7] [7] Gay, D. (1982). Solving linear interval equations, SIAM Journal on Numerical Analysis 19(4): 858-870.
[8] [8] Kaczorek, T. and Ruszewski, A. (2022). Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices, International Journal of Applied Mathematics and Computer Science 32(1): 5-10, DOI: 10.34768/amcs-2022-0001.
[9] [9] Kreinovich, V. (2016). Solving equations (and systems of equations) under uncertainty: How different practical problems lead to different mathematical and computational formulations, Granular Computing 1(3): 171-179.
[10] [10] Lodwick, W. and Dubois, D. (2015). Interval linear systems as a necessary step in fuzzy linear systems, Fuzzy Sets and Systems 281: 227-251.
[11] [11] Lodwick, W. and Thipwiwatpotjana, P. (2017). Flexible and Generalized Uncertainty Optimization: Theory and Methods, Studies in Computational Intelligence, Vol. 696, Springer, Berlin/Heidelberg.
[12] [12] Fortin, J., Dubois, D. and Fargier, H. (2008). Gradual numbers and their application to fuzzy interval analysis, IEEE Transactions on Fuzzy Systems 16(2): 388-402.
[13] [13] Mazandarani, M., Pariz, N. and Kamyad, A. (2018). Granular differentiability of fuzzy-number-valued functions, IEEE Transactions on Fuzzy Systems 26(1): 310-323.
[14] [14] Ngo, V. and Wu, W. (2021). Interval distribution power flow with relative-distance-measure arithmetic, IEEE Transactions on Smart Grid 12(5): 3858-3867.
[15] [15] Piegat, A. and Dobryakova, L. (2020). A decomposition approach to type 2 interval arithmetic, International Journal of Applied Mathematics and Computer Science 30(1): 185-201, DOI: 10.34768/amcs-2020-0015.
[16] [16] Piegat, A. and Landowski, M. (2012). Is the conventional interval-arithmetic correct?, Journal of Theoretical and Applied Computer Science 6(2): 27-44.
[17] [17] Piegat, A. and Landowski, M. (2013). Two interpretations of multidimensional RDM interval arithmetic: Multiplication and division, International Journal of Fuzzy Systems 15(4): 486-496.
[18] [18] Piegat, A. and Pluciński, M. (2015a). Computing with words with the use of inverse RDM models of membership functions, International Journal of Applied Mathematics and Computer Science 25(3): 675-688, DOI: 10.1515/amcs-2015-0049.
[19] [19] Piegat, A. and Pluciński, M. (2015b). Fuzzy number addition with the application of horizontal membership functions, The Scientific World Journal 2015, Article ID: 367214.
[20] [20] Piegat, A. and Pluciński, M. (2017). Fuzzy number division and the multi-granularity phenomenon, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(4): 497-511.
[21] [21] Piegat, A. and Pluciński, M. (2022a). The optimal tolerance solutions of the basic linear equation and the explanation of the Lodwick’s anomaly, Applied Sciences 12(4): 4382.
[22] [22] Piegat, A. and Pluciński, M. (2022b). Realistic optimal tolerant solution of the quadratic interval equation and determining the optimal control decision on the example of plant fertilization, Applied Sciences 12(21): 10725.
[23] [23] Shary, S. (1991). Optimal solution of interval linear algebraic systems, Interval Computations 2: 7-30.
[24] [24] Shary, S. (1992). On controlled solution set of interval algebraic systems, Interval Computations 6(6): 66-75.
[25] [25] Shary, S. (1994). Solving the tolerance problem for interval linear systems, Interval Computations 2: 6-26.
[26] [26] Shary, S. (1995). Solving the linear interval tolerance problem, Mathematics and Computers in Simulation 39(1-2): 53-85.
[27] [27] Siahlooei, E. and Shahzadeh Fazeli, S. (2018). Two iterative methods for solving linear interval systems, Applied Computational Intelligence and Soft Computing 2018, Article ID: 2797038.
[28] [28] Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate reasoning-I, Information Sciences 8(3): 199-249.