Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_2_a2, author = {Polak, Adam and Kluczyk, Marcin}, title = {Multi-symptom measurement based fault detection of the {PEM} fuel cell system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {197--205}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a2/} }
TY - JOUR AU - Polak, Adam AU - Kluczyk, Marcin TI - Multi-symptom measurement based fault detection of the PEM fuel cell system JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 197 EP - 205 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a2/ LA - en ID - IJAMCS_2023_33_2_a2 ER -
%0 Journal Article %A Polak, Adam %A Kluczyk, Marcin %T Multi-symptom measurement based fault detection of the PEM fuel cell system %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 197-205 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a2/ %G en %F IJAMCS_2023_33_2_a2
Polak, Adam; Kluczyk, Marcin. Multi-symptom measurement based fault detection of the PEM fuel cell system. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 2, pp. 197-205. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a2/
[1] [1] Barbir, F. (2005). PEM Fuel Cell Theory and Practice, Elsevier/Academic Press, Burlington.
[2] [2] Benmouna, A., Becherif,M., Depernet, D., Gustin, F., Ramadan, H. and Fukuhara, S. (2017). Fault diagnosis methods for proton exchange membrane fuel cell system, International Journal of Hydrogen Energy 42(2): 1534-1543.
[3] [3] Bethapudi, V., Maier, M., Hinds, G., Shearing, P., Brett, D. and Coppens, M.-O. (2019). Acoustic emission as a function of polarisation: Diagnosis of polymer electrolyte fuel cell hydration state, Electrochemistry Communications 109: 106582.
[4] [4] Bohse, J. (2004). Acoustic emission examination of polymer-matrix composites, Journal of Acoustic Emission 22: 208-223.
[5] [5] Fox, E.B. and Colon-Mercado, H.R. (2011). Mass transport limitations in proton exchange membrane fuel cells and electrolyzers, in H. Nakajima (Ed.), Mass Transfer, IntechOpen, Rijeka, Chapter 13, pp. 305-318, DOI: 10.5772/20349.
[6] [6] He, Y., Li, M., Meng, Z., Chen, S., Huang, S., Hu, Y. and Zou, X. (2021). An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems, Mechanical Systems and Signal Processing 148: 107146.
[7] [7] Hissel, D. and Péra, M.-C. (2016). Diagnostic health management of fuel cell systems: Issues and solutions, Annual Reviews in Control 42: 201-211.
[8] [8] Legros, B., Thivel, P.-X., Bultel, Y., Boinet, M. and Nogueira, R. (2010). Acoustic emission: Towards a real-time diagnosis technique for proton exchange membrane fuel cell operation, Journal of Power Sources 195(24): 8124-8133.
[9] [9] Legros, B.and Thivel, P.-X., Bultel, Y. and Nogueira, R. (2023). PEMFC on line diagnosis via acoustic emission measurements, https://www.sintef.no/globalassets/project/fc-tools/dokumenter/presentation/4a/thivel.pdf.
[10] [10] Lipiec, B., Mrugalski, M., Witczak, M. and Stetter, R. (2022). Towards a health-aware fault tolerant control of complex systems: A vehicle fleet case, International Journal of Applied Mathematics and Computer Science 32(4): 619-634, DOI: 10.34768/amcs-2022-0043.
[11] [11] Matsuura, T., Chen, J., Siegel, J.B. and Stefanopoulou, A.G. (2013). Degradation phenomena in PEM fuel cell with dead-ended anode, International Journal of Hydrogen Energy 38(26): 11346-11356.
[12] [12] Najafi, B., Bonomi, P., Casalegno, A., Rinaldi, F. and Baricci, A. (2020). Rapid fault diagnosis of PEM fuel cells through optimal electrochemical impedance spectroscopy tests, Energies 13(14), Paper ID: 3643.
[13] [13] Niroumand, A.M., Mérida, W. and Saif, M. (2011). PEM fuel cell low flow FDI, Journal of Process Control 21(4): 602-612.
[14] [14] Ogawa, M. (2020). Toshiba hydrogen business and fuel cells, https://www.bdi.fr/wp-content/uploads/2020/12/Toshiba-H2-biz-and-FC-Rev0-16dec2020.pdf.
[15] [15] Pivac, I., Radica, G., Barbir, F., Benouioua, D., Harel, F. and Candusso, D. (2017). Diagnostic methods for automotive fuel cell systems, Technical Report D-1.4, European Commission, Brussels, https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b77c06fa=PPGMS.
[16] [16] Polak, A. (2017). PEM hydrogen fuel cells-Experimental studies on the effect of oxygen flow rate on the polymer membrane, Polymer Processing 176(2): 123-133, (in Polish).
[17] [17] Taniguchi, A., Akita, T., Yasuda, K. and Miyazaki, Y. (2008). Analysis of degradation in PEMFC caused by cell reversal during air starvation, International Journal of Hydrogen Energy 33(9): 2323-2329.
[18] [18] van Biert, L., Godjevac, M., Visser, K. and Aravind, P. (2016). A review of fuel cell systems for maritime applications, Journal of Power Sources 327: 345-364.
[19] [19] Wang, H., Yuan, X.-Z. and Li, H. (Eds) (2011). PEM Fuel Cell Diagnostic Tools, CRC Press, Boca Raton, DOI: 10.1201/b11100.
[20] [20] Wu, J., Zi Yuan, X., Wang, H., Blanco, M., Martin, J.J. and Zhang, J. (2008). Diagnostic tools in PEM fuel cell research. Part II: Physical/chemical methods, International Journal of Hydrogen Energy 33(6): 1747-1757.