Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_2_a11, author = {Li, Shiyong and Zhang, Yanan and Sun, Wei and Liu, Jia}, title = {A combinatorial auction mechanism for time-varying multidimensional resource allocation and pricing in fog computing}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {327--339}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a11/} }
TY - JOUR AU - Li, Shiyong AU - Zhang, Yanan AU - Sun, Wei AU - Liu, Jia TI - A combinatorial auction mechanism for time-varying multidimensional resource allocation and pricing in fog computing JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 327 EP - 339 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a11/ LA - en ID - IJAMCS_2023_33_2_a11 ER -
%0 Journal Article %A Li, Shiyong %A Zhang, Yanan %A Sun, Wei %A Liu, Jia %T A combinatorial auction mechanism for time-varying multidimensional resource allocation and pricing in fog computing %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 327-339 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a11/ %G en %F IJAMCS_2023_33_2_a11
Li, Shiyong; Zhang, Yanan; Sun, Wei; Liu, Jia. A combinatorial auction mechanism for time-varying multidimensional resource allocation and pricing in fog computing. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 2, pp. 327-339. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_2_a11/
[1] [1] Aggarwal, A., Kumar, N., Vidyarthi, D. and Buyya, R. (2021). Fog-integrated cloud architecture enabled multi-attribute combinatorial reverse auctioning framework, Simulation Modelling Practice and Theory 109: 102307.
[2] [2] Alibaba (2019). Alibaba cloud, https://tianchi.aliyu n.com/.
[3] [3] Angelelli, E. and Filippi, C. (2011). On the complexity of interval scheduling with a resource constraint, Theoretical Computer Science 412(29): 3650-3657.
[4] [4] Bandyopadhyay, A., Roy, T., Sarkar, V. and Mallik, S. (2020). Combinatorial auction-based fog service allocation mechanism for IoT applications, 2020 10th International Conference on Cloud Computing, Data Science and Engineering (Confluence), Noida, India, pp. 518-524.
[5] [5] Baranwal, G. and Kumar, D. (2020). DAFNA: Decentralized auction based fog node allocation in 5G era, 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, Punjab, India, pp. 575-580.
[6] [6] Bermbach, D., Maghsudi, S., Hasenburg, J. and Pfandzelter, T. (2020). Towards auction-based function placement in serverless fog platforms, 2020 IEEE International Conference on Fog Computing (ICFC), Sydney, Australia, pp. 25-31.
[7] [7] Besharati, R., Rezvani, M. and Sadeghi, M. (2021). An incentive-compatible off loading mechanism in fog-cloud environments using second-price sealed-bid auction, Journal of Grid Computing 19(3): 37.
[8] [8] Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang, Y.-H. (2019). Cooperative adaptive driving for platooning autonomous self driving based on edge computing, International Journal of Applied Mathematics and Computer Science 29(2): 213-225, DOI: 10.2478/amcs-2019-0016.
[9] [9] Ghobaei-Arani, M., Souri, A. and Rahmanian, A. (2020). Resource management approaches in fog computing: A comprehensive review, Journal of Grid Computing 18(1): 1-42.
[10] [10] Guo, Y., Saito, T., Oma, R., Nakamura, S., Enokido, T. and Takizawa, M. (2020). Distributed approach to fog computing with auction method, Advanced Information Networking and Applications 1151: 268-275.
[11] [11] Han, C., Zhang, P., Wang, W., Wang, W., Wang, Y. and Zhang, Z. (2019). Delay-optimal joint processing in computation-constrained fog radio access networks, IEEE Access 7: 58857-58865.
[12] [12] Houshyar, M., Seyyed, J., Hamidreza, N. and Afshin, R. (2021). A new resource allocation method in fog computing via non-cooperative game theory, Journal of Intelligent & Fuzzy Systems 41(2): 3921-3932.
[13] [13] Junior, F., Dias, K., d’Orey, P. and Kokkinogenis, Z. (2021). Fogwise: On the limits of the coexistence of heterogeneous applications on fog computing and Internet of vehicles, Transactions on Emerging Telecommunications Technologies 32(1): e4145.
[14] [14] Kayal, P. and Liebeherr, J. (2019). Distributed service placement in fog computing: An iterative combinatorial auction approach, 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Richardson, USA, pp. 2145-2156.
[15] [15] Leao, A., Cherri, L. and Arenales, M. (2014). Determining the k-best solutions of knapsack problems, Computers & Operations Research 49: 71-82.
[16] [16] Lee, Y., Jeong, S., Masood, A., Park, L., Dao, N. and Cho, S. (2020). Trustful resource management for service allocation in fog-enabled intelligent transportation systems, IEEE Access 8: 147313-147322.
[17] [17] Li, S., Liu, H., Li, W. and Sun, W. (2023). An optimization framework for migrating and deploying multiclass enterprise applications into the cloud, IEEE Transactions on Services Computing 16(2): 941-956.
[18] [18] Li, S. and Sun, W. (2021). Utility maximisation for resource allocation of migrating enterprise applications into the cloud, Enterprise Information Systems 15(2): 197-229.
[19] [19] Li, S., Zhang, Y., Wang, Y. and Sun, W. (2019). Utility optimization-based bandwidth allocation for elastic and inelastic services in peer-to-peer networks, International Journal of Applied Mathematics and Computer Science 29(1): 111-123, DOI: 10.2478/amcs-2019-0009.
[20] [20] Mashayekhy, L., Nejad, M., Grosu, D. and Vasilakos, A. (2016). An online mechanism for resource allocation and pricing in clouds, IEEE Transactions on Computers 65(4): 1172-1184.
[21] [21] Peng, X., Ota, K. and Dong, M. (2020). Multiattribute-based double auction toward resource allocation in vehicular fog computing, IEEE Internet of Things Journal 7(4): 3094-3103.
[22] [22] Sharghivand, N., Derakhshan, F. and Siasi, N. (2021). A comprehensive survey on auction mechanism design for cloud/edge resource management and pricing, IEEE Access 9: 126502-126529.
[23] [23] Song, F., Ai, Z., Zhang, H., You, I. and Li, S. (2021a). Smart collaborative balancing for dependable network components in cyber-physical systems, IEEE Transactions on Industrial Informatics 17(10): 6916-6924.
[24] [24] Song, F., Li, L., You, I. and Zhang, H. (2021b). Enabling heterogeneous deterministic networks with smart collaborative theory, IEEE Network 35(3): 64-71.
[25] [25] Sun, H., Yu, H. and Fan, G. (2020). Contract-based resource sharing for time effective task scheduling in fog-cloud environment, IEEE Transactions on Network and Service Management 17(2): 1040-1053.
[26] [26] Tasiopoulos, A., Onur, A., Ioannis, P. and George, P. (2018). Edge-map: Auction markets for edge resource provisioning, 2018 IEEE 19th International Symposium “A World of Wireless, Mobile and Multimedia Networks (WoWMoM)”, Chania, Greece, pp. 14-22.
[27] [27] Zaman, S. and Grosu, D. (2012). Combinatorial auction-based allocation of virtual machine instances in clouds, Journal of Parallel and Distributed Computing 73(4): 495-508.
[28] [28] Zhang, J., Li, J., Li, W. and Zhang, X. (2019). A fair distribution strategy based on shared fair and time-varying resource demand, Journal of Computer Research and Development 56(7): 1534-1544.
[29] [29] Zhang, J., Yang, X., Xie, N., Zhang, X., Vasilakos, A. and Li, W. (2020). An online auction mechanism for time-varying multidimensional resource allocation in clouds, Future Generation Computer Systems 111: 27-38.
[30] [30] Zhu, L., Sun, L. and Yan, Y. (2020). Parking assistance scheme based on reverse auction in vehicle fog computing, Computer Engineering 46(7): 14-20.