Fractional time-invariant compartmental linear systems
International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 1, pp. 97-102.

Voir la notice de l'article provenant de la source Library of Science

Fractional time-invariant compartmental linear systems are introduced. Controllability and observability of these systems are analyzed. The eigenvalue assignment problem of compartmental linear systems is considered and illustrated with a numerical example.
Keywords: compartmental system, fractional system, linear system, eigenvalue assignment
Mots-clés : układ kompartmentalny, układ ułamkowy, układ liniowy, przyporządkowanie wartości własnych
@article{IJAMCS_2023_33_1_a7,
     author = {Kaczorek, Tadeusz},
     title = {Fractional time-invariant compartmental linear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {97--102},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a7/}
}
TY  - JOUR
AU  - Kaczorek, Tadeusz
TI  - Fractional time-invariant compartmental linear systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2023
SP  - 97
EP  - 102
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a7/
LA  - en
ID  - IJAMCS_2023_33_1_a7
ER  - 
%0 Journal Article
%A Kaczorek, Tadeusz
%T Fractional time-invariant compartmental linear systems
%J International Journal of Applied Mathematics and Computer Science
%D 2023
%P 97-102
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a7/
%G en
%F IJAMCS_2023_33_1_a7
Kaczorek, Tadeusz. Fractional time-invariant compartmental linear systems. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 1, pp. 97-102. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a7/

[1] [1] Busłowicz, M. (2008). Stability of linear continuous-time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 319-324.

[2] [2] Busłowicz, M. (2012) Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(2): 279-284.

[3] [3] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, Wiley, New York.

[4] [4] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.

[5] [5] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453-458.

[6] [6] Kaczorek, T. (2011a). Selected Problems of Fractional System Theory, Springer, Berlin.

[7] [7] Kaczorek, T. (2011b). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203-1210.

[8] [8] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.

[9] [9] Ruszewski, A. (2019). Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences 29(3): 549-567.

[10] [10] Sajewski, Ł. (2016). Descriptor fractional discrete-time linear system with two different fractional orders and its solution, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(1): 15-20.