Decentralized static output feedback controller design for linear interconnected systems
International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 1, pp. 83-96.

Voir la notice de l'article provenant de la source Library of Science

Many interconnected systems in the real world, such as power systems and chemical processes, are often composed of subsystems. A decentralized controller is suitable for an interconnected system because of its more practical and accessible implementation. We use the homotopy method to compute a decentralized controller. Since the centralized controller constitutes the starting point for the method, its existence becomes very important. This paper introduces a non-singular matrix and a design parameter to generate a centralized controller. If the initial centralized controller fails, we can change the value of the design parameter to generate a new centralized controller. A sufficient condition for a decentralized controller is given as a bilinear matrix inequality with three matrix variables: a controller gain matrix and a pair of other matrix variables. Finally, we present numerical examples to validate the proposed decentralized controller design method.
Keywords: output feedback, decentralized controller, homotopy method, interconnected system, matrix inequality
Mots-clés : sprzężenie zwrotne, kontroler zdecentralizowany, metoda homotopii, system połączony, nierówność macierzowa
@article{IJAMCS_2023_33_1_a6,
     author = {Fadhilah, Helisyah Nur and Adzkiya, Dieky and Arif, Didik Khusnul and Zhai, Guisheng and Mardlijah},
     title = {Decentralized static output feedback controller design for linear interconnected systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a6/}
}
TY  - JOUR
AU  - Fadhilah, Helisyah Nur
AU  - Adzkiya, Dieky
AU  - Arif, Didik Khusnul
AU  - Zhai, Guisheng
AU  - Mardlijah
TI  - Decentralized static output feedback controller design for linear interconnected systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2023
SP  - 83
EP  - 96
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a6/
LA  - en
ID  - IJAMCS_2023_33_1_a6
ER  - 
%0 Journal Article
%A Fadhilah, Helisyah Nur
%A Adzkiya, Dieky
%A Arif, Didik Khusnul
%A Zhai, Guisheng
%A Mardlijah
%T Decentralized static output feedback controller design for linear interconnected systems
%J International Journal of Applied Mathematics and Computer Science
%D 2023
%P 83-96
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a6/
%G en
%F IJAMCS_2023_33_1_a6
Fadhilah, Helisyah Nur; Adzkiya, Dieky; Arif, Didik Khusnul; Zhai, Guisheng; Mardlijah. Decentralized static output feedback controller design for linear interconnected systems. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 1, pp. 83-96. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a6/

[1] [1] Ben Amor, R. and Elloumi, S. (2018). Decentralized control approaches of large-scale interconnected systems, Advances in Science, Technology and Engineering Systems Journal 3(1): 394-403.

[2] [2] Benlatreche, A., Knittel, D. and Ostertag, E. (2008). Robust decentralised control strategies for large-scale web handling systems, Control Engineering Practice 16(6): 736-750.

[3] [3] Burke, J.V., Lewis, A.S. and Overton, M.L. (2002). Two numerical methods for optimizing matrix stability, Linear Algebra and Its Applications 351: 117-145.

[4] [4] Cai, J., Wen, C., Xing, L. and Yan, Q. (2022). Decentralized backstepping control for interconnected systems with non-triangular structural uncertainties, IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2022.3152083, (early access).

[5] [5] Chang, X.-H. (2014). Robust Output Feedback H∞ Control and Filtering for Uncertain Linear Systems, Springer, Berlin/Heidelberg.

[6] [6] Chang, X.-H. and Yang, G.-H. (2014). New results on output feedback H∞ control for linear discrete-time systems, IEEE Transactions on Automatic Control 59(5): 1355-1359.

[7] [7] Chen, N., Ikeda, M. and Gui, W. (2005). Design of robust H∞ control for interconnected systems: A homotopy method, International Journal of Control, Automation and Systems 3(2): 143-151.

[8] [8] Chiu, W.-Y. (2017). Method of reduction of variables for bilinear matrix inequality problems in system and control designs, IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(7): 1241-1256.

[9] [9] De Oliveira, M.C., Bernussou, J. and Geromel, J.C. (1999). A new discrete-time robust stability condition, Systems Control Letters 37(4): 261-265.

[10] [10] Gahinet, P. and Apkarian, P. (1994). A linear matrix inequality approach to H∞ control, International Journal of Robust and Nonlinear Control 4(4): 421-448.

[11] [11] Harno, H.G. and Petersen, I.R. (2014). Robust H∞ control via a stable decentralized nonlinear output feedback controller, International Journal of Robust and Nonlinear Control 24(2): 191-213.

[12] [12] Hassibi, A., How, J. and Boyd, S. (1999). A path-following method for solving BMI problems in control, Proceedings of the 1999 American Control Conference, San Diego, USA, Vol. 2, pp. 1385-1389.

[13] [13] Huo, X., Karimi, H.R., Zhao, X., Wang, B. and Zong, G. (2021). Adaptive-critic design for decentralized event-triggered control of constrained nonlinear interconnected systems within an identifier-critic framework, IEEE Transactions on Cybernetics 52(8): 7478-7491, DOI: 10.1109/TCYB.2020.3037321.

[14] [14] Jabri, D., Guelton, K., Belkhiat, D.E.C. and Manamanni, N. (2020). Decentralized static output tracking control of interconnected and disturbed Takagi-Sugeno systems, International Journal of Applied Mathematics and Computer Science 30(2): 225-238, DOI: 10.34768/amcs-2020-0018.

[15] [15] Javanmardi, H., Dehghani, M., Mohammadi, M., Siamak, S. and Hesamzadeh, M.R. (2022). BMI-based load frequency control in microgrids under false data injection attacks, IEEE Systems Journal 16(1): 1021-1031.

[16] [16] Javanmardi, H., Dehghani, M., Mohammadi, M., Vafamand, N. and Dragicevic, T. (2021). Optimal frequency regulation in AC mobile power grids exploiting bilinear matrix inequalities, IEEE Transactions on Transportation Electrification 7(4): 2464-2473.

[17] [17] Kiriakidis, K. (2001). Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities, IEEE Transactions on Fuzzy Systems 9(2): 269-277.

[18] [18] Lavaei, J. (2009). A new decentralization technique for interconnected systems, Proceedings of the 48h IEEE Conference on Decision and Control, CDC/2009 28th Chinese Control Conference, Shanghai, China, pp. 958-965.

[19] [19] Li, P., Lam, J., Wang, Z. and Date, P. (2011). Positivity-preserving H∞ model reduction for positive systems, Automatica 47(7): 1504-1511.

[20] [20] Liu, H. and Yu, H. (2018). Decentralized state estimation for a large-scale spatially interconnected system, ISA Transactions 74: 67-76.

[21] [21] Liu, J.J., Lam, J. and Kwok, K.-W. (2021). Further improvements on non-negative edge consensus of networked systems, IEEE Transactions on Cybernetics 52(9): 9111-9119, DOI: 10.1109/TCYB.2021.3052833.

[22] [22] Ojaghi, P. and Rahmani, M. (2017). LMI-based robust predictive load frequency control for power systems with communication delays, IEEE Transactions on Power Systems 32(5): 4091-4100.

[23] [23] Qu, C., Huo, L., Li, H. and Wang, Y. (2014). A double homotopy approach for decentralized control of civil structures, Structural Control and Health Monitoring 21(3): 269-281.

[24] [24] Siljak, D. (1991). Decentralized Control of Complex Systems, Academic Press, Boston.

[25] [25] Straka, O. and Punčochář, I. (2020). Decentralized and distributed active fault diagnosis: Multiple model estimation algorithms, International Journal of Applied Mathematics and Computer Science 30(2): 239-249, DOI: 10.34768/amcs-2020-0019.

[26] [26] Tuan, H. and Apkarian, P. (2000). Low nonconvexity-rank bilinear matrix inequalities: Algorithms and applications in robust controller and structure designs, IEEE Transactions on Automatic Control 45(11): 2111-2117.

[27] [27] Vesely, V. and Thuan, N.Q. (2011). Robust decentralized controller design for large scale systems, 2011 12th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, pp. 425-428.

[28] [28] Wang, Y., Lynch, J.P. and Law, K.H. (2009). Decentralized H∞ controller design for large-scale civil structures, Earthquake Engineering Structural Dynamics 38(3): 377-401.

[29] [29] Wang, Y., Rajamani, R. and Zemouche, A. (2018). Sequential LMI approach for the design of a BMI-based robust observer state feedback controller with nonlinear uncertainties, International Journal of Robust and Nonlinear Control 28(4): 1246-1260.

[30] [30] Zhai, G., Chen, N. and Gui, W. (2013). Decentralized design of interconnected H∞ feedback control systems with quantized signals, International Journal of Applied Mathematics and Computer Science 23(2): 317-325, DOI: 10.2478/amcs-2013-0024.

[31] [31] Zhai, G., Ikeda, M. and Fujisaki, Y. (2001). Decentralized H∞ controller design: A matrix inequality approach using a homotopy method, Automatica 37(4): 565-572.

[32] [32] Zhou, K. and Khargonekar, P.P. (1988). Robust stabilization of linear systems with norm-bounded time-varying uncertainty, Systems and Control Letters 10(1): 17–20.