Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_1_a5, author = {Ordaz, Patricio and Alazki, Hussain and S\'anchez, Bonifacio and Ordaz-Oliver, Mario}, title = {On the finite time stabilization via robust control for uncertain disturbed systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {71--82}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a5/} }
TY - JOUR AU - Ordaz, Patricio AU - Alazki, Hussain AU - Sánchez, Bonifacio AU - Ordaz-Oliver, Mario TI - On the finite time stabilization via robust control for uncertain disturbed systems JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 71 EP - 82 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a5/ LA - en ID - IJAMCS_2023_33_1_a5 ER -
%0 Journal Article %A Ordaz, Patricio %A Alazki, Hussain %A Sánchez, Bonifacio %A Ordaz-Oliver, Mario %T On the finite time stabilization via robust control for uncertain disturbed systems %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 71-82 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a5/ %G en %F IJAMCS_2023_33_1_a5
Ordaz, Patricio; Alazki, Hussain; Sánchez, Bonifacio; Ordaz-Oliver, Mario. On the finite time stabilization via robust control for uncertain disturbed systems. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 1, pp. 71-82. http://geodesic.mathdoc.fr/item/IJAMCS_2023_33_1_a5/
[1] [1] Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., De Tommasi, G. (2014). Finite-Time Stability and Control, Springer, London.
[2] [2] Amato, F., Ariola, M., Cosentino, C., Abdallah, C. and Dorato, P. (2003). Necessary and sufficient conditions for finite-time stability of linear systems, Proceedings of the 2003 American Control Conference, Denver, USA, Vol. 5, pp. 4452-4456.
[3] [3] Amato, F., Ariola, M. and Dorato, P. (2001). Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica 37(9): 1459-1463.
[4] [4] Bhat, S.P. and Bernstein, D.S. (2000). Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization 38(3): 751-766.
[5] [5] Edwards, C. and Spurgeon, S. (1998). Sliding Mode Control: Theory and Applications, CRC Press, Boca Raton.
[6] [6] Haddad, W.M. and Chellaboina, V. (2011). Nonlinear Dynamical Systems and Control: A Lyapunov-based Approach, Princeton University Press, Princeton.
[7] [7] Khalil, H.K. and Grizzle, J.W. (2002). Nonlinear Systems, Vol. 3, Prentice Hall, Upper Saddle River.
[8] [8] Kokotović, P.V., Nicosia, T., Menini, L., Zaccarian, L. and Abdallah, C.T. (2006). Current Trends in Nonlinear Systems and Control: In Honor of Petar Kokotovic and Turi Nicosia, Springer, Boston.
[9] [9] Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171-183, DOI: 10.34768/amcs-2022-0013.
[10] [10] Li, X., Ho, D.W. and Cao, J. (2019). Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica 99: 361-368.
[11] [11] Liu, H., Zhong, M. and Yang, R. (2018). Simultaneous disturbance compensation and Hi/H∞ optimization in fault detection of UAVs, International Journal of Applied Mathematics and Computer Science 28(2): 349-362, DOI: 10.2478/amcs-2018-0026.
[12] [12] Orlov, Y., Aoustin, Y. and Chevallereau, C. (2010). Finite time stabilization of a perturbed double integrator. Part I: Continuous sliding mode-based output feedback synthesis, IEEE Transactions on Automatic Control 56(3): 614-618.
[13] [13] Polyakov, A., Efimov, D. and Perruquetti, W. (2015). Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica 51: 332-340.
[14] [14] Poznyak, A., Polyakov, A. and Azhmyakov, V. (2014). Attractive Ellipsoids in Robust Control, Springer, Cham.
[15] [15] Puangmalai, J., Tongkum, J. and Rojsiraphisal, T. (2020). Finite-time stability criteria of linear system with non-differentiable time-varying delay via new integral inequality, Mathematics and Computers in Simulation 171: 170-186.
[16] [16] Utkin, V.I. and Poznyak, A.S. (2013). Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method, Automatica 49(1): 39-47.
[17] [17] Wang, H., Liu, P.X., Zhao, X. and Liu, X. (2019). Adaptive fuzzy finite-time control of nonlinear systems with actuator faults, IEEE Transactions on Cybernetics 50(5): 1786-1797.
[18] [18] Weiss, L. and Infante, E. (1967). Finite time stability under perturbing forces and on product spaces, IEEE Transactions on Automatic Control 12(1): 54-59.
[19] [19] Yu, S., Yu, X., Shirinzadeh, B. and Man, Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica 41(11): 1957-1964.