Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_4_a9, author = {Zhong, Yijun and Li, Chongjun and Li, Zhong and Duan, Xiaojuan}, title = {A proximal-based algorithm for piecewise sparse approximation with application to scattered data fitting}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {671--682}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_4_a9/} }
TY - JOUR AU - Zhong, Yijun AU - Li, Chongjun AU - Li, Zhong AU - Duan, Xiaojuan TI - A proximal-based algorithm for piecewise sparse approximation with application to scattered data fitting JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 671 EP - 682 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_4_a9/ LA - en ID - IJAMCS_2022_32_4_a9 ER -
%0 Journal Article %A Zhong, Yijun %A Li, Chongjun %A Li, Zhong %A Duan, Xiaojuan %T A proximal-based algorithm for piecewise sparse approximation with application to scattered data fitting %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 671-682 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_4_a9/ %G en %F IJAMCS_2022_32_4_a9
Zhong, Yijun; Li, Chongjun; Li, Zhong; Duan, Xiaojuan. A proximal-based algorithm for piecewise sparse approximation with application to scattered data fitting. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 4, pp. 671-682. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_4_a9/
[1] [1] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences 2(1): 183–202, DOI: 10.1137/080716542.
[2] [2] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.
[3] [3] Cai, J.F., Osher, S. and Shen, Z. (2009). Convergence of the linearized Bregman iteration for [...] norm minimization, Mathematics of Computation 78(268): 2127–2136.
[4] [4] Cai, Z., Lan, T. and Zheng, C. (2016). Hierarchical MK splines: Algorithm and applications to data fitting, IEEE Transactions on Multimedia 19(5): 921–934.
[5] [5] Castaño, D. and Kunoth, A. (2005). Multilevel regularization of wavelet based fitting of scattered data some experiments, Numerical Algorithms 39(1): 81–96.
[6] [6] Deng, J., Chen, F., Li, X., Hu, C., Yang, Z. and Feng, Y. (2008). Polynomial splines over hierarchical T-meshes, Graphical Models 70(4): 76–86.
[7] [7] Franca, G., Robinson, D. and Vidal, R. (2018). ADMM and accelerated ADMM as continuous dynamical systems, International Conference on Machine Learning, PMLR 2018, Stockholm, Sweden, pp. 1559–1567.
[8] [8] Giannelli, C., Jüttler, B. and Speleers, H. (2012). THB-splines: The truncated basis for hierarchical splines, Computer Aided Geometric Design 29(7): 485–498.
[9] [9] Hao, Y., Li, C. and Wang, R. (2018). Sparse approximate solution of fitting surface to scattered points by MLASSO model, Science China Mathematics 61(7): 1319–1336, DOI: 10.1007/s11425-016-9087-y.
[10] [10] Hirsch, M.W., Smale, S. and Devaney, R.L. (2004). Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, Amsterdam.
[11] [11] Johnson, M.J., Shen, Z. and Xu, Y. (2009). Scattered data reconstruction by regularization in B-spline and associated wavelet spaces, Journal of Approximation Theory 159(2): 197–223, DOI: 10.1016/j.jat.2009.02.005.
[12] [12] Kraft, D. (1997). Adaptive and linearly independent multilevel B-splines, in Le Méhauté et al. (Eds), Surface Fitting and Multiresolution Methods, Vanderbilt University Press, Nashville, pp. 209–218.
[13] [13] Lee, S., Wolberg, G. and Shin, S. (1997). Scattered data interpolation with multilevel B-splines, IEEE Transactions on Visualization and Computer Graphics 3(3): 228–244, DOI: 10.1109/2945.620490.
[14] [14] Li, C. and Zhong, Y.J. (2019). Piecewise sparse recovery in union of bases, arXiv 1903.01208.
[15] [15] McCoy, M.B. and Tropp, J.A (2014). Sharp recovery bounds for convex demixing, with applications, Foundations of Computational Mathematics 14(3): 503–567.
[16] [16] Moon, S. and Ko, K. (2018). A point projection approach for improving the accuracy of the multilevel b-spline approximation, Journal of Computational Design and Engineering 5(2): 173–179.
[17] [17] Ni, Q., Wang, X. and Deng, J. (2019). Modified PHT-splines, Computer Aided Geometric Design 73(1): 37–53.
[18] [18] Parikh, N. and Boyd, S. (2014). Proximal algorithms, Foundations and Trends in Optimization 1(3): 127–239, DOI: 10.1.1.398.7055.
[19] [19] Pięta, P. and Szmuc, T. (2021). Applications of rough sets in big data analysis: An overview, International Journal of Applied Mathematics and Computer Science 31(4): 659–683, DOI: 10.34768/amcs-2021-0046.
[20] [20] Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton.
[21] [21] Sun, D., Toh, K.C. and Yang, L. (2015). A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM Journal on Optimization 25(2): 882–915.
[22] [22] Starck, J.L., Elad, M. and Donoho, D.L. (2005). Image decomposition via the combination of sparse representations and a variational approach, IEEE Transactions on Image Processing 14(10): 1570–1582, DOI: 10.1109/TIP.2005.852206.
[23] [23] Wang, F., Cao, W. and Xu, Z. (2018). Convergence of multi-block Bregman ADMM for nonconvex composite problems, Science China Information Sciences 61(12): 1–12.
[24] [24] Wei, D., Lai, M.J., Reng, Z. and Yin, W. (2017). Parallel multi-block ADMM with o(1/k) convergence, Journal of Scientific Computing 71(2): 712–736.
[25] [25] Zhang, J. and Luo, Z.Q. (2020). A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization, SIAM Journal on Optimization 30(3): 2272–2302.
[26] [26] Zhang, X., Burger, M. and Osher, S. (2011). A unified primal-dual algorithm framework based on Bregman iteration, Journal of Scientific Computing 46(1): 20–46.
[27] [27] Zhong, Y. and Li, C. (2020). Piecewise sparse recovery via piecewise inverse scale space algorithm with deletion rule, Journal of Computational Mathematics 38(2): 375–394, DOI: 10.4208/jcm.1810-m2017-0233.