Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_3_a9, author = {Kindelan, Manuel and Gonz\'alez-Rodr{\'\i}guez, Pedro and \'Alvarez, Diego}, title = {RBF based quadrature on the sphere}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {467--479}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a9/} }
TY - JOUR AU - Kindelan, Manuel AU - González-Rodríguez, Pedro AU - Álvarez, Diego TI - RBF based quadrature on the sphere JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 467 EP - 479 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a9/ LA - en ID - IJAMCS_2022_32_3_a9 ER -
%0 Journal Article %A Kindelan, Manuel %A González-Rodríguez, Pedro %A Álvarez, Diego %T RBF based quadrature on the sphere %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 467-479 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a9/ %G en %F IJAMCS_2022_32_3_a9
Kindelan, Manuel; González-Rodríguez, Pedro; Álvarez, Diego. RBF based quadrature on the sphere. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 3, pp. 467-479. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a9/
[1] [1] Ahrens, C. and Beylkin, G. (2009). Rotationally invariant quadratures for the sphere, Proceedings of the Royal Society A 465(2110): 3103–3125.
[2] [2] Atkinson, K. (1982). Numerical integration on the sphere, Journal of the Australian Mathematical Society B 23(3): 332–347.
[3] [3] Bazant, Z. and Oh, B. (1986). Efficient numerical integration on the surface of a sphere, Journal of Applied Mathematics and Mechanics 66(11): 37–49.
[4] [4] Beentjes, C. (2015). Quadrature on a spherical surface, https://cbeentjes.github.io/files/Ramblings/QuadratureSphere.pdf.
[5] [5] Bruno, O.P. and Kunyansky, L.A. (2001). A fast, high order algorithm for the solution of surface scattering problems: Basic implementation, tests and applications, Journal of Computational Physics 169(1): 80–110.
[6] [6] Flyer, N. and Fornberg, B. (2011). Radial basis functions: Developments and applications to planetary scale flows, Computers and Fluids 46(1): 23–32.
[7] [7] Flyer, N., Lehto, E., Blaise, S.,Wright, G. and St-Cyr, A. (2012). A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere, Journal of Computational Physics 231(11): 4078–4095.
[8] [8] Flyer, N., Wright, G. and Fornberg, B. (2014). Radial basis function generated finite differences: A mesh-free method for computational geosciences, in M. Freeden et al. (Eds), Handbook of Geomathematics, Springer-Verlag, Berlin, pp. 2535–2669.
[9] [9] Fornberg, B. and Flyer, N. (2015). A Primer on Radial Basis Functions with Applications to the Geosciences, Society for Industrial and Applied Mathematics, Philadelphia.
[10] [10] Fornberg, B. and Martel, J. (2014). On spherical harmonics based numerical quadrature over the surface of a sphere, Advances in Computational Mathematics 40(5–6): 1169–1184.
[11] [11] Fornberg, B. and Piret, C. (2007). A stable algorithm for flat radial basis function on a sphere, SIAM Journal on Scientific Computing 30(1): 60–80.
[12] [12] Fornberg, B. and Piret, C. (2008). On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere, Journal of Computational Physics 227(5): 2758–2780.
[13] [13] Fuselier, E., Hangelbroek, T., Narcowich, F., Ward, J. and Wright, B. (2014). Kernel based quadrature on spheres and other homogeneous spaces, Numerische Mathematik 127(1): 57–92.
[14] [14] Halton, J. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik 1(1): 84–90.
[15] [15] Hesse, K., Sloan, I. and Womersley, R. (2010). Numerical integration on the sphere, in M. Freeden et al. (Eds), Handbook of Geomathematics, Springer-Verlag, Berlin, pp. 1187–1219.
[16] [16] Klöckner, A., Barnett, A., Greengard, L. and O’Neil, M. (2013). Quadrature by expansion: A new method for the evaluation of layer potentials, Journal of Computational Physics 252: 332–349.
[17] [17] Klinteberg, L. and Tornberg, A.K. (2016). A fast integral equation method for solid particles in viscous flow using quadrature by expansion, Journal of Computational Physics 326: 420–445.
[18] [18] Reeger, J. (2015). Spherical Quadrature RBF (Quadrature Nodes), https://es.mathworks.com/matlabcentral/fileexchange/51214.
[19] [19] Reeger, J. and Fornberg, B. (2016). Numerical quadrature over the surface of a sphere, Studies in Applied Mathematics 137(1): 174–188.
[20] [20] Reeger, J., Fornberg, B. and Watts, L. (2016). Numerical quadrature over smooth, closed surfaces, Proceedings of the Royal Society A 472(2194): 20160401.
[21] [21] Saff, E. and Kuijlaar, A. (1997). Distributing many points on a sphere, Proceedings of the Royal Society A 19(2): 5–11.
[22] [22] Sommariva, A. and Womersley, R. (2005). Integration by RBF over the sphere, Applied Mathematics Report amr05/17, University of New South Wales, Sydney.
[23] [23] Stroud, A. (1971). Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs.
[24] [24] Womersley, R. and Sloan, H. (2003). Interpolation and cubature on the sphere, https://web.maths.unsw.edu.au/˜rsw/Sphere/.