Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_3_a5, author = {Gonz\'alez, Antonio and Sala, Antonio and Armesto, Leopoldo}, title = {Decentralized multi-agent formation control with pole-region placement via cone-complementarity linearization}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {415--428}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a5/} }
TY - JOUR AU - González, Antonio AU - Sala, Antonio AU - Armesto, Leopoldo TI - Decentralized multi-agent formation control with pole-region placement via cone-complementarity linearization JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 415 EP - 428 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a5/ LA - en ID - IJAMCS_2022_32_3_a5 ER -
%0 Journal Article %A González, Antonio %A Sala, Antonio %A Armesto, Leopoldo %T Decentralized multi-agent formation control with pole-region placement via cone-complementarity linearization %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 415-428 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a5/ %G en %F IJAMCS_2022_32_3_a5
González, Antonio; Sala, Antonio; Armesto, Leopoldo. Decentralized multi-agent formation control with pole-region placement via cone-complementarity linearization. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 3, pp. 415-428. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a5/
[1] [1] Bai, H. and Wen, J.T. (2010). Cooperative load transport: A formation-control perspective, IEEE Transactions on Robotics 26(4): 742–750.
[2] [2] Bechlioulis, C.P., Giagkas, F., Karras, G.C. and Kyriakopoulos, K.J. (2019). Robust formation control for multiple underwater vehicles, Frontiers in Robotics and AI 6(2019): 90.
[3] [3] Dehghani, M.A. and Menhaj, M.B. (2016). Communication free leader–follower formation control of unmanned aircraft systems, Robotics and Autonomous Systems 80(2016): 69–75.
[4] [4] Dong, X., Yu, B., Shi, Z. and Zhong, Y. (2014). Time-varying formation control for unmanned aerial vehicles: Theories and applications, IEEE Transactions on Control Systems Technology 23(1): 340–348.
[5] [5] El Ghaoui, L., Oustry, F. and AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Transactions on Automatic Control 42(8): 1171–1176.
[6] [6] Farrera, B., López-Estrada, F.-R., Chadli, M., Valencia-Palomo, G. and Gómez-Peñate, S. (2020). Distributed fault estimation of multi-agent systems using a proportional-integral observer: A leader-following application, International Journal of Applied Mathematics and Computer Science 30(3): 551–560, DOI: 10.34768/amcs-2020-0040.
[7] [7] González, A., Aranda, M., López-Nicolás, G. and Sagüés, C. (2019). Robust stability analysis of formation control in local frames under time-varying delays and actuator faults, Journal of the Franklin Institute 356(2): 1131–1153.
[8] [8] González-Sierra, J., Dzul, A. and Martínez, E. (2022). Formation control of distance and orientation based-model of an omnidirectional robot and a quadrotor UAV, Robotics and Autonomous Systems 147(2022): 103921.
[9] [9] He, S., Wang, M., Dai, S.-L. and Luo, F. (2018). Leader–follower formation control of USVs with prescribed performance and collision avoidance, IEEE Transactions on Industrial Informatics 15(1): 572–581.
[10] [10] Kamel, M.A. and Zhang, Y. (2015). Decentralized leader–follower formation control with obstacle avoidance of multiple unicycle mobile robots, 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, Canada, pp. 406–411.
[11] [11] Lee, G. and Chwa, D. (2018). Decentralized behavior–based formation control of multiple robots considering obstacle avoidance, Intelligent Service Robotics 11(1): 127–138.
[12] [12] Li, Z., Liu, H.H., Zhu, B. and Gao, H. (2015). Robust second-order consensus tracking of multiple 3-DOF laboratory helicopters via output feedback, IEEE/ASME Transactions on Mechatronics 20(5): 2538–2549.
[13] [13] Oh, K.-K., Park, M.-C. and Ahn, H.-S. (2015). A survey of multi-agent formation control, Automatica 53(2015): 424–440.
[14] [14] Olfati-Saber, R. and Murray, R. (2004). Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control 49(9): 1520–1533.
[15] [15] Peaucelle, D., Arzelier, D., Bachelier, O. and Bernussou, J. (2000). A new robust D-stability condition for real convex polytopic uncertainty, Systems and Control Letters 40(1): 21–30.
[16] [16] Peng, C., Zhang, A. and Li, J. (2021). Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties, International Journal of Applied Mathematics and Computer Science 31(4): 635–645, DOI: 10.34768/amcs-2021-0044.
[17] [17] Rahimi, R., Abdollahi, F. and Naqshi, K. (2014). Time-varying formation control of a collaborative heterogeneous multi agent system, Robotics and Autonomous Systems 62(12): 1799–1805.
[18] [18] Ren, W. and Atkins, E. (2005). Second-order consensus protocols in multiple vehicle systems with local interactions, AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, USA, p. 6238.
[19] [19] Ren, W. and Beard, R.W. (2004). Decentralized scheme for spacecraft formation flying via the virtual structure approach, Journal of Guidance, Control, and Dynamics 27(1): 73–82.
[20] [20] Ren, W. and Beard, R.W. (2008). Distributed Consensus in Multi-Vehicle Cooperative Control, Springer, London.
[21] [21] Ren, W. and Sorensen, N. (2008). Distributed coordination architecture for multi-robot formation control, Robotics and Autonomous Systems 56(4): 324–333.
[22] [22] Tian, B., Lu, H., Zuo, Z. and Yang, W. (2018). Fixed-time leader–follower output feedback consensus for second-order multiagent systems, IEEE Transactions on Cybernetics 49(4): 1545–1550.
[23] [23] Wen, C., Liu, F., Song, Q. and Feng, X. (2016). Observer-based consensus of second-order multi-agent systems without velocity measurements, Neurocomputing 179(2016): 298–306.
[24] [24] Zhai, G., Okuno, S., Imae, J. and Kobayashi, T. (2009). A matrix inequality based design method for consensus problems in multi-agent systems, International Journal of Applied Mathematics and Computer Science 19(4): 639–646, DOI: 10.2478/v10006-009-0051-1.
[25] [25] Zhang, H. and Chen, J. (2017). Bipartite consensus of multi-agent systems over signed graphs: State feedback and output feedback control approaches, International Journal of Robust and Nonlinear Control 27(1): 3–14.
[26] [26] Zou, Y., Zhou, Z., Dong, X. and Meng, Z. (2018). Distributed formation control for multiple vertical take off and landing UAVs with switching topologies, IEEE/ASME Transactionson Mechatronics 23(4): 1750–1761.