Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_3_a3, author = {Cheng, Chao and Wang, Meng and Wang, Jiuhe and Shao, Junjie and Chen, Hongtian}, title = {An {SFA-HMM} performance evaluation method using state difference optimization for running gear systems in high-speed trains}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {389--402}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a3/} }
TY - JOUR AU - Cheng, Chao AU - Wang, Meng AU - Wang, Jiuhe AU - Shao, Junjie AU - Chen, Hongtian TI - An SFA-HMM performance evaluation method using state difference optimization for running gear systems in high-speed trains JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 389 EP - 402 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a3/ LA - en ID - IJAMCS_2022_32_3_a3 ER -
%0 Journal Article %A Cheng, Chao %A Wang, Meng %A Wang, Jiuhe %A Shao, Junjie %A Chen, Hongtian %T An SFA-HMM performance evaluation method using state difference optimization for running gear systems in high-speed trains %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 389-402 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a3/ %G en %F IJAMCS_2022_32_3_a3
Cheng, Chao; Wang, Meng; Wang, Jiuhe; Shao, Junjie; Chen, Hongtian. An SFA-HMM performance evaluation method using state difference optimization for running gear systems in high-speed trains. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 3, pp. 389-402. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a3/
[1] [1] Bui, D., Tuan, T., Klempe, H., Pradhan, B. and Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural, Landslides 13(2): 361–378, DOI: 10.1007/s10346-015-0557-6.
[2] [2] Chen, H., Chen, Z., Chai, Z., Jiang, B. and Huang, B. (2021). A single-side neural network-aided canonical correlation analysis with applications to fault diagnosis, IEEE Transactions on Cybernetics 52(9): 9454–9466, DOI: 10.1109/TCYB.2021.3060766.
[3] [3] Chen, H. and Jiang, B. (2020). A review of fault detection and diagnosis for the traction system in high-speed trains, IEEE Transactions on Intelligent Transportation Systems 21(2): 450–465, DOI: 10.1109/TITS.2019.2897583.
[4] [4] Chen, H., Jiang, B., Ding, S. and Huang, B. (2022). Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives, IEEE Transactions on Intelligent Transportation Systems 23(3): 1700–1716, DOI: 10.1109/TITS.2020.3029946.
[5] [5] Chen, H., Jiang, B., Lu, N. and Chen, W. (2020). Data-Driven Detection and Diagnosis of Faults in Traction Systems of High-Speed Trains, Springer Nature, Berlin, DOI: 10.1007/978-3-030-46263-5.
[6] [6] Chen, H., Jiang, B., Lu, N. and Mao, Z. (2018). Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains, IEEE Transactions on Vehicular Technology 67(6): 4819–4830, DOI: 10.1109/TVT.2018.2818538.
[7] [7] Cheng, C., Wang, J., Chen, H., Chen, Z., Luo, H. and Xie, P. (2021). A review of intelligent fault diagnosis for high-speed trains: Qualitative approaches, Entropy 23(1): 1, DOI: 10.3390/e23010001.
[8] [8] Deng, X., Tian, X., Chen, S. and Harris, C. (2018). Nonlinear process fault diagnosis based on serial principal component analysis, IEEE Transactions on Neural Networks and Learning Systems 29(3): 560–572, DOI: 10.1109/TNNLS.2016.2635111.
[9] [9] Don, M. and Khan, F. (2019). Process fault prognosis using hidden Markov model-Bayesian networks hybrid model, Industrial and Engineering Chemistry Research 58(27): 12041–12053, DOI: 10.1021/acs.iecr.9b00524.
[10] [10] Jiang, Q., Yan, X., Yi, H. and Gao, F. (2020). Data-driven batch-end quality modeling and monitoring based on optimized sparse partial least squares, IEEE Transactions on Industrial Electronics 67(5): 4098–4107, DOI: 10.1109/TIE.2019.2922941.
[11] [11] Jiang, Y. and Yin, S. (2019). Recent advances in key-performance-indicator oriented prognosis and diagnosis with a Matlab toolbox: DB-kit, IEEE Transactions on Industrial Informatics 15(5): 2849–2858, DOI: 10.1109/TII.2018.2875067.
[12] [12] Kaczorek, T. and Ruszewski, A. (2022). Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices, International Journal of Applied Mathematics and Computer Science 32(1): 5–10, DOI: 10.34768/amcs-2022-0001.
[13] [13] Kiranyaz, S., Gastli, A., Ben-Brahim, L., Alemadi, N. and Gabbouj, M. (2018). Real-time fault detection and identification for MMC using 1D convolutional neural networks, IEEE Transactions on Industrial Electronics 66(11): 8760–8771, DOI: 10.1109/TIE.2018.2833045.
[14] [14] Li, S., Cao, H. and Yang, Y. (2018). Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification, Journal of Power Sources 378(99): 646–659, DOI: 10.1016/j.jpowsour.2018.01.015.
[15] [15] Liu, J., Shi, L., Yong, J. and Krishnamurthy, M. (2013a). Reliability evaluating for traction drive system of high-speed electrical multiple units, 2013 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, USA, DOI: 10.1109/ITEC.2013.6574491.
[16] [16] Liu, Y., Wang, F. and Chang, Y. (2013b). Online fuzzy assessment of operating performance and cause identification of nonoptimal grades for industrial processes, Industrial and Engineering Chemistry Research 52(50): 18022–18030, DOI: 10.1021/ie402243s.
[17] [17] Luo, H., Yin, S., Liu, T. and Khan, A. (2020). A data-driven realization of the control-performance-oriented process monitoring system, IEEE Transactions on Industrial Electronics 67(1): 521–530, DOI: 10.1109/TIE.2019.2892705.
[18] [18] Luo, H., Zhao, H. and Yin, S. (2018). Data-driven design of fog computing aided process monitoring system for large-scale industrial processes, IEEE Transactions on Industrial Informatics 14(10): 4631–4641, DOI: 10.1109/TII.2018.2843124.
[19] [19] Molaei, M., Oraee, H. and Fotuhi-Firuzabad,M. (2007). Markov model of drive-motor systems for reliability calculation, IEEE International Symposium on Industrial Electronics, Montreal, Canada, pp. 2286–2291.
[20] [20] Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
[21] [21] Shang, C., Yang, F., Gao, X., Huang, X., Suykens, J. and Huang, D. (2015). Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis, Aiche Journal 61(11): 3666–3682, DOI: 10.1002/aic.14888.
[22] [22] Song, Y., Liu, Z., Rnnquist, A., Nvik, P. and Liu, Z. (2020). Contact wire irregularity stochastics and effect on high-speed railway pantograph–catenary interactions, IEEE Transactions on Instrumentation and Measurement 69(10): 8196–8206, DOI: 10.1109/TIM.2020.2987457.
[23] [23] Song, Y., Wang, Z., Liu, Z. and Wang, R. (2021). A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation, Mechanical Systems and Signal Processing 151: 107336, DOI: 10.1016/j.ymssp.2020.107336.
[24] [24] Sun, Q., Zhou, Y. and Li, M. (2020). Bearing operating state evaluation based on improved HMM, International Journal of Pattern Recognition and Artificial Intelligence 34(6), DOI: 10.1142/S0218001420590168.
[25] [25] Wang, S., Stroe, D., Fernandez, C., Xiong, L., Fan, Y. and Cao, W. (2020). A novel power state evaluation method for the lithium battery packs based on the improved external measurable parameter coupling model, Journal of Power Sources 242(5): 118506.1–118506.13, DOI: 10.1016/j.jclepro.2019.118506.
[26] [26] Wang, W., Xi, J., Chong, A. and Lin, L. (2017). Driving style classification using a semi-supervised support vector machine, Knowledge-Based Systems 47(5): 650–660, DOI: 10.1109/THMS.2017.2736948.
[27] [27] Wu, C., Du, B., Cui, X. and Zhang, L. (2017). A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion, Remote Sensing of Environment 199: 241–255, DOI: 10.1016/j.rse.2017.07.009.
[28] [28] Yan, A., Yu, H. and Wang, D. (2017). Case-based reasoning classifier based on learning pseudo metric retrieval, Expert Systems with Applications 89: 91–98, DOI: 10.1016/j.eswa.2017.07.022.
[29] [29] Yan, L., Dong, H. and Jia, L. (2015). A method on the evaluation technology of high speed railway infrastructure safety state, 2015 27th Chinese Control and Decision Conference (CCDC), Qingdao, China, DOI: 10.1109/CCDC.2015.7162506.
[30] [30] Yuan, X., Zhou, J., Huang, B., Wang, Y., Yang, C. and Gui, W. (2020). Hierarchical quality-relevant feature representation for soft sensor modeling: A novel deep learning strategy, IEEE Transactions on Industrial Informatics 16(6): 3721–3730, DOI: 10.1109/TII.2019.2938890.
[31] [31] Yun, T., Yong, Q., Yong, F., Zheng, J. and Jia, L. (2017). Reliability data analysis of bogie components of high speed train, Prognostics and System Health Management Conference, Chengdu, China, DOI: 10.1109/PHM.2016.7819892.
[32] [32] Zhang, F., Zhang, Z., Zhang, P. and Wang, S. (2018). UD-HMM: An unsupervised method for shilling attack detection based on hidden Markov model and hierarchical clustering, Knowledge-Based Systems 148: 146–166, DOI: 10.1016/j.knosys.2018.02.032.
[33] [33] Zhang, M., Wan, X., Gang, L., Lv, X., Wu, Z. and Liu, Z. (2021). An automated driving strategy generating method based on WGAIL–DDPG, International Journal of Applied Mathematics and Computer Science 31(3): 461–470, DOI: 10.34768/amcs-2021-0031.
[34] [34] Zhang, S. and Zhao, C. (2019). Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly, IEEE Transactions on Industrial Electronics 66(5): 3773–3783, DOI: 10.1109/TIE.2018.2853603.
[35] [35] Zheng, Y., Zhao, F. and Wang, Z. (2019). Fault diagnosis system of bridge crane equipment based on fault tree and Bayesian network, International Journal of Advanced Manufacturing Technology 105(9): 3605–3618, DOI: 10.1007/s00170-019-03793-0.
[36] [36] Zou, X. and Zhao, C. (2019). Meticulous assessment of operating performance for processes with a hybrid of stationary and nonstationary variables, Industrial and Engineering Chemistry Research 58(3): 1341–1351, DOI: 10.1021/acs.iecr.8b05005.