Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_3_a0, author = {Patalas-Maliszewska, Justyna and Posdzich, Marco and Skrzypek, Katarzyna}, title = {Modelling information for the burnishing process in a cyber-physical production system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {345--354}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a0/} }
TY - JOUR AU - Patalas-Maliszewska, Justyna AU - Posdzich, Marco AU - Skrzypek, Katarzyna TI - Modelling information for the burnishing process in a cyber-physical production system JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 345 EP - 354 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a0/ LA - en ID - IJAMCS_2022_32_3_a0 ER -
%0 Journal Article %A Patalas-Maliszewska, Justyna %A Posdzich, Marco %A Skrzypek, Katarzyna %T Modelling information for the burnishing process in a cyber-physical production system %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 345-354 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a0/ %G en %F IJAMCS_2022_32_3_a0
Patalas-Maliszewska, Justyna; Posdzich, Marco; Skrzypek, Katarzyna. Modelling information for the burnishing process in a cyber-physical production system. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 3, pp. 345-354. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_3_a0/
[1] [1] Alcácer, V. (2019). Scanning the Industry 4.0: A literature review on technologies for manufacturing systems, Engineering Science and Technology, an International Journal 22(3): 899–919.
[2] [2] Alpar, P. and Schulz, M. (2016). Self-service business intelligence, Business and Information Systems Engineering 58: 151–155, DOI: 10.1007/s12599-016-0424-6.
[3] [3] Borkowski, B., Dudek, H. and Szczęsny, W. (2017). Econometrics: Selected Issues, PWN,Warsaw, (in Polish).
[4] [4] Broy, M. (2010). Cyber-Phisical Systems. Innovation Durch Software-Intensive Eingebettete Systeme, Springer, Munich.
[5] [5] Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, H., Bian, H., Zhang, S., Pradhan, B. and Ahmad, B. (2020). Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods, Science of the Total Environment 701: 134979, DOI: 10.1016/j.scitotenv.2019.134979.
[6] [6] Chomienne, V., Valiorgue, F., Rech, J. and Verdu, C. (2016). Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel, CIRP Journal of Manufacturing Science and Technology 13: 90–96.
[7] [7] DAT (2016). Kompetenzentwicklungsstudie Industrie 4.0: Erste Ergebnisse und Schlussfolgerungen, Acatech, Munich, https://www.acatech.de/publikation/kompetenzentwicklungsstudie-industrie-4-0-erste-ergebnisse-und-schlussfolgerungen/.
[8] [8] de Lacalle, L.N., Rodríguez, A., Lamikiz, A., Celaya, A. and Alberdi, R. (2011). Five-axis machining and burnishing of complex parts for the improvement of surface roughness, Materials and Manufacturing Processes 26(8): 997–1003.
[9] [9] Dumitrescu, R., Gausemeier, J. and Kühn, A. (2015). Auf dem Weg zu Industrie 4.0: Erfolgsfaktor Referenzarchitektur, Technical report TR-47, it‘s OWL Clustermanagement GmbH (Hrsg.), Paderborn, https://www.its-owl.de/fileadmin/PDF/Informationsmaterialien/2015-Auf_dem_Weg_zu_Industrie_4.0_Erfolgsfaktor_Referenzarchitektur.pdf.
[10] [10] Farzaneh, M., Isaai, M., Arasti, M. and Mehralian, G. (2018). A framework for developing business intelligence systems: A knowledge perspective, Management Research Review 41 (12): 1358–1374, DOI: 10.1108/MRR-01-2018-0007.
[11] [11] Hassan, A. and Maqableh, A. (2000). The effects of initial burnishing parameters on non-ferrous components, Journal of Materials Processing Technology 102(1–3): 115–121.
[12] [12] Jaworski, M. (2018). Regression function and noise variance tracking methods for data streams with concept drift, International Journal of Applied Mathematics and Computer Science 28(3): 559–567, DOI: 10.2478/amcs-2018-0043.
[13] [13] Jeehyeong, K., Guejong, J. and Jongpil, J. (2019). A novel CPPS architecture integrated with centralized OPC UA server for 5G-based smart manufacturing, Procedia Computer Science 155: 113–120.
[14] [14] Kagermann, H., Wahlster,W. and Helbig, J. (2013). Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0, Technical report, Acatech, Frankfurt/Main, https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendationsfor-implementing-industry-4-0-data.pdf.
[15] [15] Kowalik, P. (2012). The use of spreadsheets to select response variables using the information capacity index method (Hellwig’s method), in Z.E. Zieliński (Ed), The Role of Informatics in the Economic and Social Sciences: Innovation and Interdisciplinary Implications, Vol. 2, WSH Publishing House, Kielce, pp. 168–178, (in Polish).
[16] [16] Krupitzer, C., Muller, S., Lesch, V., Zufle, M., Edinger, J., Lemken, A., Schafer, D., Kounev, S. and Becker, C. (2020). A survey on human machine interaction in industry 4.0, ArXiv: abs/2002.01025.
[17] [17] Meissner, H. and Aurich, J.C. (2019). Implications of cyber-physical production systems on integrated process planning and scheduling, Procedia Manufacturing 28: 167–173.
[18] [18] Mourtzis, D. (2020). Simulation in the design and operation of manufacturing systems: State of the art and new trends, International Journal of Production Research 58(7): 1927–1949.
[19] [19] Posdzich, M., Stöckmann, R., Witt, M. and Putz, M. (2010). Determination of surface shape deviation by using force-controlled burnishing, Procedia CIRP 93: 1275–1280.
[20] [20] Rojas, R., Rauch, E., Vidoni, R. and Matt, D.T. (2017). Enabling connectivity of cyber-physical production systems: A conceptual framework, Procedia Manufacturing 11: 822–829.
[21] [21] Roldán, J., Crespo, E. and Martín-Barrio, A. (2019). A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining, Robotics and Computer-Integrated Manufacturing 59: 305–316, DOI: 10.1016/j.rcim.2019.05.004.
[22] [22] Tonelli, F., Demartini, M., Pacella, M. and Lala, R. (2021). Cyber-physical systems (CPS) in supply chain management: From foundation to practical implementation, Procedia CIRP 99: 598–603.
[23] [23] Trabesinger, S., Pichler, R., Schall, D. and Gfrerer, R. (2019). Connectivity as a prior challenge in establishing CPPS on basis of heterogeneous IT-software environments, Procedia Manufacturing 31: 370–376.
[24] [24] Tutunea, M. and Rus, R. (2012). Business intelligence solutions for SME’s, Procedia Economics and Finance 3: 865–870.
[25] [25] Wang,W., Zhang, Y. and Zhong, R. (2020). A proactive material handling method for CPS enabled shop-floor, Robotics and Computer-Integrated Manufacturing 61: 101849, DOI: 10.1016/j.rcim.2019.101849.
[26] [26] Wojnakowski, M., Wiśniewski, R., Bazydło, G. and Popławski, M. (2021). Analysis of safeness in a Petri net-based specification of the control part of cyber-physical systems, International Journal of Applied Mathematics and Computer Science 31(4): 647–657, DOI: 10.34768/amcs-2021-0045.
[27] [27] Yli-Ojanpera, M., Sierla, S., Papakonstantinou, N. and Vyatkin, V. (2019). Adapting an agile manufacturing concept to the reference architecture model Industry 4.0: A survey and case study, Journal of Industrial Information Integration 15: 147–160, DOI: 10.1016/j.jii.2018.12.002.