Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_2_a7, author = {Liu, Pengyan and Li, Hong-Xu}, title = {Global behavior of a multi-group {SEIR} epidemic model with spatial diffusion in a heterogeneous environment}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {271--283}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a7/} }
TY - JOUR AU - Liu, Pengyan AU - Li, Hong-Xu TI - Global behavior of a multi-group SEIR epidemic model with spatial diffusion in a heterogeneous environment JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 271 EP - 283 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a7/ LA - en ID - IJAMCS_2022_32_2_a7 ER -
%0 Journal Article %A Liu, Pengyan %A Li, Hong-Xu %T Global behavior of a multi-group SEIR epidemic model with spatial diffusion in a heterogeneous environment %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 271-283 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a7/ %G en %F IJAMCS_2022_32_2_a7
Liu, Pengyan; Li, Hong-Xu. Global behavior of a multi-group SEIR epidemic model with spatial diffusion in a heterogeneous environment. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 2, pp. 271-283. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a7/
[1] [1] Allen, L.J.S., Bolker, B.M., Lou, Y. and Nevai, A.L. (2008). Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete and Continuous Dynamical Systems B 21(1): 1–20.
[2] [2] Chaturantabut, S. (2020). Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework, International Journal of Applied Mathematics and Computer Science 30(4): 615–628, DOI: 10.34768/amcs-2020-0045.
[3] [3] Chen, T., Xu, J. and Wu, B. (2016). Stability of multi-group coupled systems on networks with multi-diffusion based on the graph-theoretic approach, Mathematical Methods in the Applied Sciences 39(18): 5744–5756.
[4] [4] Du, Y. (2006). Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol. 1: Maximum Principles and Applications, World Scientific, Singapore.
[5] [5] El-Douh, A.A.-R., Lu, S.F., Elkouny, A.A. and Amein, A.S. (2022). Hybrid cryptography with a one-time stamp to secure contact tracing for COVID-19 infection, International Journal of Applied Mathematics and Computer Science 32(1): 139–146, DOI: 10.34768/amcs-2022-0011.
[6] [6] Grabowski, P. (2021). Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedback control systems, International Journal of Applied Mathematics and Computer Science 31(2): 195–218, DOI: 10.34768/amcs-2021-0014.
[7] [7] Guo, Z., Wang, F.-B. and Zou, X. (2012). Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, Journal of Mathematical Biology 65(6–7): 1387–1410.
[8] [8] Hale, J.K. (1969). Dynamical systems and stability, Journal of Mathematical Analysis and Applications 26(1): 39–59.
[9] [9] Hale, J.K. (1988). Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence.
[10] [10] Li, H., Peng, R. and Wang, F.-B. (2017). Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, Journal of Differential Equations 262(2): 885–913.
[11] [11] Liu, P. and Li, H.-X. (2020a). Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion, Mathematical Biosciences and Engineering 17(6): 7248–7273.
[12] [12] Liu, P. and Li, H.-X. (2020b). Global stability of autonomous and nonautonomous hepatitis B virus models in patchy environment, Journal of Applied Analysis and Computation 10(5): 1771–1799.
[13] [13] Luo, Y., Tang, S., Teng, Z. and Zhang, L. (2019). Global dynamics in a reaction-diffusion multi-group SIR epidemic model with nonlinear incidence, Nonlinear Analysis: Real World Applications 50: 365–385.
[14] [14] Martin, R.H. and Smith, H.L. (1990). Abstract functional differential equations and reaction-diffusion systems, Transactions of the American Mathematical Society 321(1): 1–44.
[15] [15] Smith, H.L. (1995). Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence.
[16] [16] Song, P., Lou, Y. and Xiao, Y. (2019). A spatial SEIRS reaction-diffusion model in heterogeneous environment, Journal of Differential Equations 267(9): 5084–5114.
[17] [17] Wang, W. and Zhao, X.-Q. (2012). Basic reproduction numbers for reaction-diffusion epidemic models, SIAM Journal on Applied Dynamical Systems 11(4): 1652–1673.
[18] [18] Wu, J. (1996). Theory and Applications of Partial Functional Differential Equations, Springer, New York.
[19] [19] Xing, Y. and Li, H.-X. (2021). Almost periodic solutions for a SVIR epidemic model with relapse, Mathematical Biosciences and Engineering 18(6): 7191–7217.
[20] [20] Yang, J. and Wang, X. (2019). Dynamics and asymptotical profiles of an age-structured viral infection model with spatial diffusion, Applied Mathematics and Computation 360(11): 236–254.
[21] [21] Yang, Y., Zou, L., Zhang, T. and Xu, Y. (2020). Dynamical analysis of a diffusive SIRS model with general incidence rate, Discrete and Continuous Dynamical Systems B 25(7): 2433–2451.
[22] [22] Zhao, L., Wang, Z.-C. and Ruan, S. (2018). Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, Journal of Mathematical Biology 77(6–7, SI): 1871–1915.
[23] [23] Zhao, X.-Q. (2003). Dynamical Systems in Population Biology, Springer, New York.