Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_2_a3, author = {Ko\'scielny, Jan Maciej and Barty\'s, Micha{\l} and Syfert, Micha{\l} and Sztyber, Anna}, title = {A graph theory-based approach to the description of the process and the diagnostic system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {213--227}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a3/} }
TY - JOUR AU - Kościelny, Jan Maciej AU - Bartyś, Michał AU - Syfert, Michał AU - Sztyber, Anna TI - A graph theory-based approach to the description of the process and the diagnostic system JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 213 EP - 227 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a3/ LA - en ID - IJAMCS_2022_32_2_a3 ER -
%0 Journal Article %A Kościelny, Jan Maciej %A Bartyś, Michał %A Syfert, Michał %A Sztyber, Anna %T A graph theory-based approach to the description of the process and the diagnostic system %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 213-227 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a3/ %G en %F IJAMCS_2022_32_2_a3
Kościelny, Jan Maciej; Bartyś, Michał; Syfert, Michał; Sztyber, Anna. A graph theory-based approach to the description of the process and the diagnostic system. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 2, pp. 213-227. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a3/
[1] [1] Bartyś, M. (2014). Chosen Issues of Fault Isolation, Polish Scientific Publishers PWN,Warsaw.
[2] [2] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2015). Diagnosis and Fault-Tolerant Control, Springer, New York.
[3] [3] Bregón, A., Alonso-González, C.J. and Pulido, B. (2014). Integration of simulation and state observers for online fault detection of nonlinear continuous systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(12): 1553–1568.
[4] [4] Bregón, A., Biswas, G., Pulido, B., Alonso-Gonzalez, C. and Khorasgani, H. (2013). A common framework for compilation techniques applied to diagnosis of linear dynamic systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(7): 863–876.
[5] [5] Chanthery, E., Sztyber, A., Louise Travé-Massuyés, C. and Perez-Zuñiga, C.G. (2020). Process decomposition and test selection for distributed fault diagnosis, in H. Fujita et al. (Eds), Trends in Artificial Intelligence Theory and Applications: Artificial Intelligence Practices, Springer, Cham, pp. 914–925.
[6] [6] Chen, J. and Patton, R. (2012). Robust Model-Based Fault Diagnosis for Dynamic Systems, Springer, New York.
[7] [7] Cho, S. and Jiang, J. (2019). A fault detection and isolation technique using nonlinear support vectors dichotomizing multi-class parity space residuals, Journal of Process Control 82: 31–43.
[8] [8] Chow, E. and Willsky, A. (1984). Analytical redundancy and the design of robust failure detection systems, IEEE Transactions on Automatic Control 29(3): 603–614.
[9] [9] Cordier, M.O., Dague, P., Lévy, F., Montmain, J., Staroswiecki, M. and Travé-Massuyés, L. (2004). Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 34(5): 2163–2177.
[10] [10] Daigle, M., Koutsoukos, X. and Biswas, G. (2009). A qualitative event-based approach to continuous systems diagnosis, IEEE Transactions on Control Systems Technology 17(4): 780–793.
[11] [11] Ding, S. (2008). Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer, London.
[12] [12] Ding, S. (2014). Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results, Journal of Process Control 24(2): 431–449.
[13] [13] Düstegör, D., Frisk, E., Cocquempot, V., Krysander, M. and Staroswiecki, M. (2006). Structural analysis of fault isolability in the Damadics benchmark, Control Engineering Practice 14(6): 597–608.
[14] [14] Frank, P. (1987). Fault diagnosis in dynamic systems via state estimations methods. A survey, in S. Tzafestas et al. (Eds), System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches, Springer, Dordrecht, pp. 35–98.
[15] [15] Frank, P.M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy, Automatica 26(3): 459–474.
[16] [16] Frisk, E. and Krysander, M. (2007). Sensor placement for maximum fault isolability, 18th International Workshop on Principles of Diagnosis (DX-07), Nashville, USA, pp. 106–113.
[17] [17] Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York.
[18] [18] Greiner, R., Smith, B. and Wilkerson, R. (1989). A correction to the algorithm in Reiter’s theory of diagnosis, Artificial Intelligence 41(1): 79–88.
[19] [19] Hamdi, H., Rodrigues, M., Rabaoui, B. and Benhadj Braiek, N. (2021). A fault estimation and fault-tolerant control based sliding mode observer for LPV descriptor systems with time delay, International Journal of Applied Mathematics and Computer Science 31(2): 247–258, DOI: 10.34768/amcs-2021-0017.
[20] [20] Iri, M., Aoki, K., O’Shima, E. and Matsuyama, H. (1979). An algorithm for diagnosis of system failures in the chemical process, Computers Chemical Engineering 3(1–4): 489–493.
[21] [21] Isermann, R. (1984). Process fault detection based on modeling and estimation. methods: A survey, Automatica 20(4): 387–404.
[22] [22] Isermann, R. (2006). Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Heidelberg.
[23] [23] Jakobsson, E., Petterson, R., Frisk, E. and Krysander, M. (2020). Fatigue damage monitoring for mining vehicles using data driven models, International Journal of Prognostics on and Health Management 11(1): 1–15.
[24] [24] Jung, D. (2020). Data-driven open-set fault classification of residual data using Bayesian filtering, IEEE Transactions on Control Systems Technology 28(5): 2045–2052.
[25] [25] Jung, D., Frisk, E. and Krysander, M. (2015). Quantitative isolability analysis of different fault modes, IFAC-PapersOnLine 48(21): 1275–1282.
[26] [26] Jung, D., Ng, K., Frisk, E. and Krysander, M. (2018). Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation, Control Engineering Practice 80: 146–156.
[27] [27] de Kleer, J. (2011). Hitting set algorithms for model-based diagnosis, Proceedings of 22nd International Workshop on Principles of Diagnosis, Murnau, Germany, pp. 1–6.
[28] [28] de Kleer, J. and Kurien, J. (2003). Fundamentals of model-based diagnosis, 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Washington DC, USA, pp. 25–36.
[29] [29] de Kleer, J. and Williams, B. (1987). Diagnosing multiple faults, Artificial Intelligence 32(1): 97–130.
[30] [30] Korbicz, J. and Kościelny, J.M. (Eds) (2010). Modeling, Diagnostics and Process Control. Implementation in the DiaSter System, Springer, Berlin/Heidelberg.
[31] [31] Kościelny, J.M. (1999). Application of fuzzy logic fault isolation in a three-tank system, 14th IFAC World Congress IFAC, Bejing, China, pp. 7754–7759.
[32] [32] Kościelny, J.M. and Bartyś, M. (2021). Comparative study of fault distinguishability based on bi-and three-valued diagnostic signals, 32nd International Workshop on Principles of Diagnosis, DX-2021, Hamburg, Germany, pp. 1–6.
[33] [33] Kościelny, J.M., Bartyś, M. and Grudziak, Z. (2021b). Tri-valued evaluation of residuals as a method of addressing the problem of fault compensation effect, in J. Korbicz and K. Patan (Eds), Advances in Diagnostics of Processes and Systems, Springer, Cham, pp. 31–44.
[34] [34] Kościelny, J.M., Bartyś, M. and Rostek, K. (2019). The comparison of fault distinguishability approaches—Case study, Bulletin of the Polish Academy of Sciences: Technical Sciences 67(6): 1059–1068.
[35] [35] Kościelny, J., Bartyś, M. and Sztyber, A. (2021a). Diagnosing with a hybrid fuzzy-Bayesian inference approach, Engineering Applications of Artificial Intelligence 104(104345): 1–11.
[36] [36] Kościelny, J.M., Rostek, K., Syfert, M. and Sztyber, A. (2016). Fault isolability with different forms of the faults–symptoms relation, International Journal of Applied Mathematics and Computer Science 26(4): 815–826, DOI: 10.1515/amcs-2016-0058.
[37] [37] Kościelny, J.M., Syfert, M., Fajdek, B. and Kozak, A. (2017). The application of a graph of a process in HAZOP analysis in accident prevention system, Journal of Loss Prevention in the Process Industries 50: 55–66.
[38] [38] Kościelny, J.M., Syfert, M. and Wnuk, P. (2021c). Diagnostic row reasoning method based on multiple-valued evaluation of residuals and elementary symptoms sequence, Energies 14(9), Paper no. 2476.
[39] [39] Kościelny, J.M. and Sztyber, A. (2018). Decomposition of complex diagnostic systems, IFAC-PapersOnLine 51(24): 755–762.
[40] [40] Krysander, M. (2006). Design and Analysis of Diagnosis Systems Using Structural Methods, PhD thesis, Linköping University, Linköping.
[41] [41] Krysander, M., Aslund, J. and Nyberg, M. (2007). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics A: Systems and Humans 38(1): 197–206.
[42] [42] Łabęda-Grudziak, Z. and Lipiński, M. (2021). The identification method of the coal mill motor power model with the use of machine learning techniques, Bulletin of the Polish Academy of Sciences: Technical Sciences 69(1): e135842.
[43] [43] Mejdi, S., Messaoud, A. and Ben Abdennour, R. (2020). Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process, International Journal of Applied Mathematics and Computer Science 30(1): 61–74, DOI: 10.34768/amcs-2020-0005.
[44] [44] Mrugalski, M. (2014). Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis, Springer, Berlin.
[45] [45] Mur, A., Travé-Massuyés, L., Chanthery, E., Pons, R. and Ribot, P. (2022). A neural algorithm for the detection and correction of anomalies: Application to the landing of an airplane, Sensors 22(6): 2334.
[46] [46] Odendaal, H. and Jones, T. (2014). Actuator fault detection and isolation: An optimised parity space approach, Control Engineering Practice 26: 222–232.
[47] [47] Patan, K. (2008). Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, Springer, Berlin.
[48] [48] Patton, R. and Chen, J. (1991). A review of parity space approaches to fault diagnosis, IFAC Proceedings Volumes 24(6): 65–81.
[49] [49] Pazera, M., Buciakowski, M., Witczak, M. and Mrugalski, M. (2020). A quadratic boundedness approach to a neural network-based simultaneous estimation of actuator and sensor faults, Neural Computing and Applications 32(2): 379–389.
[50] [50] Pulido, B., Zamarreo, J., Merino, A. and Bregon, A. (2019). State space neural networks and model-decomposition methods for fault diagnosis of complex industrial systems, Engineering Applications of Artificial Intelligence 79: 67–86.
[51] [51] Qin, S. (2012). Survey on data-driven industrial process monitoring and diagnosis, Annual Reviews in Control 36(2): 220–234.
[52] [52] Reiter, R.A. (1987). Theory of diagnosis from first principles, Artificial Intelligence 32(1): 57–95.
[53] [53] Rodler, P. (2020). Reuse, reduce and recycle: Optimizing Reiter’s HS-tree for sequential diagnosis, 24th European Conference on Artificial Intelligence ECAI 2020, Santiago de Compostella, Spain, pp. 873–880.
[54] [54] Romero, L., Blesa, J., Puig, V. and Cembrano, G. (2022). Clustering-learning approach to the localization of leaks in water distribution networks, Journal of Water Resources Planning and Management 148(4): 04022003.
[55] [55] Rotondo, D., Buciakowski, M. and Witczak, M. (2021). Simultaneous state and process fault estimation in linear parameter varying systems using robust quadratic parameter varying observers, International Journal of Robust and Nonlinear Control 31(17): 8390–8407.
[56] [56] Simani, S., Farsoni, S. and Castaldi, P. (2018). Data-driven techniques for the fault diagnosis of a wind turbine benchmark, International Journal of Applied Mathematics and Computer Science 28(2): 247–268, DOI: 10.2478/amcs-2018-0018.
[57] [57] Song, Y., Zhong, M., Xue, T., Ding, S. and Li, W. (2020). Parity space-based fault isolation using minimum error minimax probability machine, Control Engineering Practice 95, Paper no. 104242.
[58] [58] Syfert, M., Bartyś, M. and Kościelny, J.M. (2018). Refinement of fuzzy diagnosis in decentralized two-level diagnostic structure, IFAC-PapersOnLine 51(24): 160–167.
[59] [59] Sztyber, A. (2017). Sensor placement for fault diagnosis using graph of a process, Journal of Physics—Conference Series 783(1), Paper no. 012007.
[60] [60] Sztyber, A. and Kościelny, J. (2016). Diagnostic reasoning framework combining fuzzy logic and Dempster–Shafer theory, IEEE International Conference Prognostics and Health Management (ICPHM), Ottawa, Canada, pp. 1–6.
[61] [61] Sztyber, A., Ostasz, A. and Kościelny, J. (2015). Graph of a process—A new tool for finding model’s structures in model based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(7): 1004–1017.
[62] [62] Taheri, M., Khorasani, K., Shames, I. and Meskin, N. (2020). Cyber attack and machine induced fault detection and isolation methodologies for cyber-physical systems, arXiv 2009.06196v1.
[63] [63] Travé-Massuyés, L. (2014a). Bridges between diagnosis theories from control and AI perspectives, in J. Korbicz and M. Kowal (Eds), Intelligent Systems in Technical and Medical Diagnostics, Springer, Berlin/Heidelberg, pp. 3–28.
[64] [64] Travé-Massuyés, L. (2014b). Bridging control and artificial intelligence theories for diagnosis: A survey, Engineering Applications of Artificial Intelligence 27: 1–16.
[65] [65] Travé-Massuyés, L., Escobet, T. and Milne, R. (2006). Diagnosability analysis based on component-supported analytical redundancy relations, IEEE Transactions on Systems, Man and Cybernetics, A: Systems and Humans 36(6): 1146–1160.
[66] [66] Vanden-Daele, R., Peng, Y. and Kinnaert, M. (1997). Fault diagnosis using belief functions, 3rd IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes SAFEPROCESS’97, Hull, UK, pp. 546–551.
[67] [67] Witczak, M. (2007). Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems: From Analytical to Soft Computing Approaches, Springer, Berlin.
[68] [68] Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems: Analytical and Soft Computing Approaches, Springer, Cham.
[69] [69] Witczak, M., Mrugalski, M., Pazera, M. and Kukurowski, N. (2020). Fault diagnosis of an automated guided vehicle with torque and motion forces estimation: A case study, ISA Transactions 104: 370–381.
[70] [70] Xu, F., Puig, V., Ocampo-Martinez, C., Olaru, S. and Niculescu, S.-I. (2017). Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation, International Journal of Applied Mathematics and Computer Science 27(1): 43–61, DOI: 10.1515/amcs-2017-0004.
[71] [71] Yang, F., Sirish, L. and Xiao, D. (2010). Signed directed graph modeling of industrial processes and their validation by data-based methods, Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, pp. 387–392.
[72] [72] Zhai, S., Wang, W. and Ye, H. (2015). Fault diagnosis based on parameter estimation in closed-loop systems, IET Control Theory and Application 9(7): 1146–1153.