Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_2_a2, author = {Khoury, Boutrous and Nejjari, Fatiha and Puig, Vicen\c{c}}, title = {Reliability-aware zonotopic tube-based model predictive control of a drinking water network}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {197--211}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a2/} }
TY - JOUR AU - Khoury, Boutrous AU - Nejjari, Fatiha AU - Puig, Vicenç TI - Reliability-aware zonotopic tube-based model predictive control of a drinking water network JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 197 EP - 211 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a2/ LA - en ID - IJAMCS_2022_32_2_a2 ER -
%0 Journal Article %A Khoury, Boutrous %A Nejjari, Fatiha %A Puig, Vicenç %T Reliability-aware zonotopic tube-based model predictive control of a drinking water network %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 197-211 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a2/ %G en %F IJAMCS_2022_32_2_a2
Khoury, Boutrous; Nejjari, Fatiha; Puig, Vicenç. Reliability-aware zonotopic tube-based model predictive control of a drinking water network. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 2, pp. 197-211. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a2/
[1] [1] Bemporad, A. and Morari, M. (2007). Robust Model Predictive Control: A Survey, Springer, London, pp. 207–226.
[2] [2] Cai, B., Lui, Y., Lui, K. and Chang, Y. (2020). Bayesian Networks for Reliability Engineering, Springer, Singapore.
[3] [3] Cembrano, G., Quevedo, J., Puig, V., Pérez, R., Figueras i Jové, J., Verdejo, J., Escaler, I., Ramón, G., Barnet, G., Rodríguez, P. and Casas, M. (2011). PLIO: A generic tool for real-time operational predictive optimal control of water networks, Water Science and Technology: A Journal of the International Association on Water Pollution Research 64(2): 448–459.
[4] [4] Chamseddine, A., Theilliol, D., Sadeghzadeh, I., Zhang, Y. and Weber, P. (2014). Optimal reliability design for over-actuated systems based on the MIT rule: Application to an octocopter helicopter testbed, Reliability Engineering System Safety 132: 196–206.
[5] [5] Grosso, J., Ocampo-Martínez, C., Puig, V., Limon, D. and Pereira, M. (2014). Economic MPC for the management of drinking water networks, European Control Conference (ECC), Strasbourg, France, pp. 790–795.
[6] [6] Grosso, J., Velarde Rueda, P., Ocampo-Martinez, C., Maestre, J. and Puig, V. (2016). Stochastic model predictive control approaches applied to drinking water networks, Optimal Control Applications and Methods 38(4): 541–558.
[7] [7] Haghifam, M.-R. (2015). Application of Bayesian networks in composite power system reliability assessment and reliability-based analysis, IET Generation, Transmission Distribution 9(13): 1755–1764.
[8] [8] Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin/Heidelberg.
[9] [9] Karimi Pour, F., Puig, V. and Cembrano, G. (2019). Economic health-aware LPV-MPC based on system reliability assessment for water transport network, Energies 12(15): 3015.
[10] [10] Khelassi, A., Theilliol, D. and Weber, P. (2010). Control design for over-actuated systems based on reliability indicators, UKACC International Conference on Control, Coventry, UK, pp. 1–6.
[11] [11] Le, V., Stoica Maniu, C., Alamo, T., Camacho, E. and Dumur, D. (2013). Zonotopes: From Guaranteed State Estimation to Control, Wiley, Hoboken.
[12] [12] Löfberg, J. (2003). Min-Max Approaches to Robust Model Predictive Control, PhD thesis, Linköping University, Linköping.
[13] [13] Mayne, D., Seron, M. and Raković, S.V. (2005). Robust model predictive control of constrained linear system with bounded disturbances, Automatica 41(2): 219–224.
[14] [14] Mejdi, S., Messaoud, A. and Ben Abdennour, R. (2020). Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process, International Journal of Applied Mathematics and Computer Science 30(1): 61–74, DOI: 10.34768/amcs-2020-0005.
[15] [15] Müller, M., Angeli, D. and Allgöwer, F. (2013). Economic model predictive control with self-tuning terminal cost, European Journal of Control 19(5): 408–416.
[16] [16] Philippe, W. and Lionel, J. (2006). Complex system reliability modelling with dynamic object oriented Bayesian networks, IET Generation, Transmission and Distribution 91(2): 149–162.
[17] [17] Pour, F.K., Puig, V. and Cembrano, G. (2018). Health-aware LPV-MPC based on system reliability assessment for drinking water networks, IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, pp. 187–192.
[18] [18] Puig, V., Escobet, T., Sarrate, R. and Quevedo, J. (2015). Fault diagnosis and fault tolerant control in critical infrastructure systems, in E. Kyriakides and M. Polycarpou (Eds), Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems, Studies in Computational Intelligence, Vol. 565, Springer, Berlin/Heidelberg.
[19] [19] Raković, S. V., Kerrigan, E., Kouramas, K. and Mayne, D. (2005). Invariant approximations of the minimal robust positively invariant set, IEEE Transactions on Automatic Control 50(3): 406–410.
[20] [20] Rausand, M. and Hoyland, A. (2004). System Reliability Theory, 2nd Edn., Wiley, Hoboken.
[21] [21] Ray, A. and Caplin, J. (2000). Life extending control of aircraft: Trade-off between flight performance and structural durability, The Aeronautical Journal 104(1039): 397–408.
[22] [22] Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
[23] [23] Salazar, J., Weber, P., Nejjari, F., Sarrate, R. and Theilliol, D. (2017). System reliability aware model predictive control framework, Reliability Engineering System Safety 167(2): 663–672.
[24] [24] Sanchez-Sardi, H., Escobet, T., Puig, V. and Odgaard, P. (2018). Health-aware model predictive control of wind turbines using fatigue prognosis, International Journal of Adaptive Control and Signal Processing 32(4): 614–627.
[25] [25] Toro, R., Ocampo-Martínez, C., Logist, F., Impe, J.V. and Puig, V. (2011). Tuning of predictive controllers for drinking water networked systems, IFAC Proceedings Volumes 44(1): 14507–14512.
[26] [26] Velarde, P., Maestre, J.M., Ocampo-Martinez, C. and Bordons, C. (2016). Application of robust model predictive control to a renewable hydrogen-based microgrid, European Control Conference (ECC), Aalborg, Denmark, pp. 1209–1214.
[27] [27] Wang, Y., Alamo, T., Puig, V. and Cembrano, G. (2018). Economic model predictive control with nonlinear constraint relaxation for the operational management of water distribution networks, Energies 11(4): 1–20.
[28] [28] Wang, Y., Puig, V. and Cembrano, G. (2017). Non-linear economic model predictive control of water distribution networks, Journal of Process Control 56: 23–34.
[29] [29] Zagórowska, M., Wu, O., Ottewill, J., Reble, M. and Thornhill, N. (2020). A survey of models of degradation for control applications, Annual Reviews in Control 50: 150–173.
[30] [30] Zeller, M. and Montrone, F. (2018). Combination of component fault trees and Markov chains to analyze complex, software-controlled systems, 3rd International Conference on System Reliability and Safety (ICSRS), Barcelona, Spain, pp. 13–20.