Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_2_a1, author = {Zhang, Zhao and Yang, Zhong and Liu, Shuchang and Chen, Shuang and Zhang, Xiaokai}, title = {A multi-model based adaptive reconfiguration control scheme for an electro-hydraulic position servo system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {185--196}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a1/} }
TY - JOUR AU - Zhang, Zhao AU - Yang, Zhong AU - Liu, Shuchang AU - Chen, Shuang AU - Zhang, Xiaokai TI - A multi-model based adaptive reconfiguration control scheme for an electro-hydraulic position servo system JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 185 EP - 196 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a1/ LA - en ID - IJAMCS_2022_32_2_a1 ER -
%0 Journal Article %A Zhang, Zhao %A Yang, Zhong %A Liu, Shuchang %A Chen, Shuang %A Zhang, Xiaokai %T A multi-model based adaptive reconfiguration control scheme for an electro-hydraulic position servo system %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 185-196 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a1/ %G en %F IJAMCS_2022_32_2_a1
Zhang, Zhao; Yang, Zhong; Liu, Shuchang; Chen, Shuang; Zhang, Xiaokai. A multi-model based adaptive reconfiguration control scheme for an electro-hydraulic position servo system. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 2, pp. 185-196. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_2_a1/
[1] [1] Ahmadian, N., Khosravi, A. and Sarhadi, P. (2015). A new approach to adaptive control of multi-input multi-output systems using multiple models, Journal of Dynamic Systems, Measurement, and Control 137(9): 091009.
[2] [2] Calise, A.J., Lee, S. and Sharma, M. (2001). Development of a reconfigurable flight control law for tailless aircraft, Journal of Guidance, Control, and Dynamics 24(5): 896–902.
[3] [3] Chen, F., Wu, Q., Tao, G. and Jiang, B. (2014). A reconfiguration control scheme for a quadrotor helicopter via combined multiple models, International Journal of Advanced Robotic Systems 11(8): 122–132.
[4] [4] Ciliz, M.K. and Tuncay, M. (2005). Comparative experiments with a multiple model based adaptive controller for a SCARA type direct drive manipulator, Robotica 23(6): 721–729.
[5] [5] Falconí, G.P., Angelov, J. and Holzapfel, F. (2018). Adaptive fault-tolerant position control of a hexacopter subject to an unknown motor failure, International Journal of Applied Mathematics and Computer Science 28(2): 309–321, DOI: 10.2478/amcs-2018-0022.
[6] [6] Hespanha, J., Liberzon, D., Stephen Morse, A., Anderson, B.D., Brinsmead, T.S. and De Bruyne, F. (2001). Multiple model adaptive control. Part 2: Switching, International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 11(5): 479–496.
[7] [7] Jain, T., Yamé, J.-J. and Sauter, D. (2012). Model-free reconfiguration mechanism for fault tolerance, International Journal of Applied Mathematics and Computer Science 22(1): 125–137, DOI: 10.2478/v10006-012-0009-6.
[8] [8] Jiang, B., Guo, Y. and Shi, P. (2010). Adaptive reconfiguration scheme for flight control systems, Proceedings of the Institution of Mechanical Engineers I: Journal of Systems and Control Engineering 224(6): 713–723.
[9] [9] Li, J.L. and Yang, G.H. (2014). Development and prospect of adaptive fault-tolerant control, Control and Decision 29(11): 1921–1926.
[10] [10] Liu, L., Yao, J., Ma, D. and Wang, G. (2019). Low-frequency learning-based robust adaptive control for electro-hydraulic position servo system, Acta Armamentarii 40(4): 737–743.
[11] [11] Ma, J. (2003). Research on Intelligent Pump and Its Experiment System, PhD thesis, Beijing University of Aeronautics and Astronautics, Beijing.
[12] [12] Manring, N.D. and Fales, R.C. (2019). Hydraulic Control Systems, John Wiley Sons, New York.
[13] [13] Mark, B., Andreas, S., Marco, M. and Rolf, I. (2010). Active fault tolerant control of an electro-hydraulic servo axis with a duplex-valve-system, IFAC Proceedings Volumes 43(18): 660–668.
[14] [14] Maybeck, P.S. (1999). Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems, International Journal of Robust and Nonlinear Control 9(14): 1051–1070.
[15] [15] Mejdi, S., Messaoud, A. and Ben Abdennour, R. (2020). Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process, International Journal of Applied Mathematics and Computer Science 30(1): 61–74, DOI: 10.34768/amcs-2020-0005.
[16] [16] Milic, V., Situm, Z. and Essert, M. (2010). Robust H infinity position control synthesis of an electro-hydraulic servo system, ISA Transactions 49(4): 535–542.
[17] [17] Mintsa, H.A., Venugopal, R., Kenne, J.P. and Belleau, C. (2011). Feedback linearization-based position control of an electrohydraulic servo system with supply pressure uncertainty, IEEE Transactions on Control Systems Technology 20(4): 1092–1099.
[18] [18] Narendra, S.K. and Balakrishnan, J. (1997). Adaptive control using multiple models, IEEE Transactions on Automatic Control 42(2): 171–187.
[19] [19] Niksefat, N. and Sepehri, N. (2001). Fault tolerant control of electrohydraulic servo positioning systems, Proceedings of the 2001 American Control Conference, Arlington, USA, pp. 4472–4477.
[20] [20] Niksefat, N. and Sepehri, N. (2002). A QFT fault-tolerant control for electrohydraulic positioning systems, IEEE Transactions on Control Systems Technology 10(4): 626–632.
[21] [21] Pazera, M., Buciakowski, M. and Witczak., M. (2018). Robust multiple sensor fault-tolerant control for dynamic non-linear systems: Application to the aerodynamical twin-rotor system, International Journal of Applied Mathematics and Computer Science 28(2): 297–308, DOI: 10.2478/amcs-2018-0021.
[22] [22] Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
[23] [23] Salleh, S., Rahmat, M.F., Othman, S.M. and Danapalasingam, K.A. (2015). Review on modeling and controller design of hydraulic actuator systems, International Journal on Smart Sensing Intelligent Systems 8(1): 338–367.
[24] [24] Sharifi, S., Tivay, A., Rezaei, S.M., Zareinejad, M. and Mollaei Dariani, B. (2018). Leakage fault detection in electro-hydraulic servo systems using a nonlinear representation learning approach, ISA Transactions 73: 154–164.
[25] [25] Shin, D.H. and Kim, Y. (2004). Reconfigurable flight control system design using adaptive neural networks, IEEE Transactions on Control Systems Technology 12(1): 87–100.
[26] [26] Si, G., Shen, Y., Wang, J., Cao, T. and Wan, M. (2020). Active disturbance rejection control of electro-hydraulic position servo system, Chinese Hydraulics Pneumatics 12(3): 14–21.
[27] [27] Sofianos, N.A. and Boutalis, Y.S. (2016). Robust adaptive multiple models based fuzzy control of nonlinear systems, Neurocomputing 173: 1733–1742.
[28] [28] Sun,W., Jian, D., Yuan, Y. and Yuan, Y. (2016). Fault simulation of electro-hydraulic servo system for fault self-healing based on immune principle, 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, pp. 136–139.
[29] [29] Tan, C., Tao, G. and Qi, R. (2014). An adaptive control scheme using multiple reference models, International Journal of Adaptive Control and Signal Processing 28(11): 1290–1298.
[30] [30] Tan, C., Yao, X.and Tao, G. and Qi, R. (2012). A multiple-model based adaptive actuator failure compensation scheme for control of near-space vehicles, IFAC Proceedings Volumes 45(20): 594–599.
[31] [31] Tang, R. and Zhang, Q. (2011). Dynamic sliding mode control scheme for electro-hydraulic position servo system, Procedia Engineering 24: 28–32.
[32] [32] Wang, C., Shang, Y., Jiao, Z. and Han, S. (2014). Nonlinear robust control of valve controlled electro-hydraulic position servo system, Journal of Beijing University of Aeronautics and Astronautics 40(12): 1736–1740.
[33] [33] Wang, H. (2017). Research on an Adaptive Sliding Mode Control Strategy for Electro-Hydraulic Position Servo System, PhD thesis, Shanghai Jiao Tong University, Shanghai.
[34] [34] Yao, J., Jiao, Z., Shang, Y. and Huang, C. (2010). Adaptive nonlinear optimal compensation control for electro-hydraulic load simulator, Chinese Journal of Aeronautics 23(6): 101–114.
[35] [35] Yu, X. and Jiang, J. (2011). Hybrid fault-tolerant flight control system design against partial actuator failures, IEEE Transactions on Control Systems Technology 20(4): 871–886.
[36] [36] Yu-Ying, G. and Jiang, B. (2009). Multiple model-based adaptive reconfiguration control for actuator fault, Acta Automatica Sinica 35(11): 1452–1458.
[37] [37] Yuan, H.B., Na, H.C. and Kim, Y.B. (2018). System identification and robust position control for electro-hydraulic servo system using hybrid model predictive control, Journal of Vibration and Control 24(18): 4145–4159.
[38] [38] Zhai, J., Fei, S. and Da, F. (2006). Intelligent control using multiple models based on on-line learning, Journal of Control Theory and Applications 4(4): 397–401.
[39] [39] Zhang, Z., Yang, Z., Xiong, S., Chen, S., Liu, S. and Zhang, X. (2021). Simple adaptive control-based reconfiguration design of cabin pressure control system, Complexity 2021(3): 1–16.