A comprehensive study of clustering a class of 2D shapes
International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 1, pp. 95-109.

Voir la notice de l'article provenant de la source Library of Science

The paper is concerned with clustering with respect to the shape and size of 2D contours that are boundaries of cross-sections of 3D objects of revolution. We propose a number of similarity measures based on combined disparate Procrustes analysis (PA) and dynamic time warping (DTW) distances. A motivation and the main application for this study comes from archaeology. The computational experiments performed refer to the clustering of archaeological pottery.
Keywords: shape representation, Procrustes distance, shape similarity, dynamic time warping, DTW, morphometrics, clustering, Kendall shape theory, archaeological pottery
Mots-clés : reprezentacja kształtu, podobieństwo kształtu, DTW, ceramika archeologiczna
@article{IJAMCS_2022_32_1_a7,
     author = {Kaliszewska, Agnieszka and Syga, Monika},
     title = {A comprehensive study of clustering a class of {2D} shapes},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a7/}
}
TY  - JOUR
AU  - Kaliszewska, Agnieszka
AU  - Syga, Monika
TI  - A comprehensive study of clustering a class of 2D shapes
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2022
SP  - 95
EP  - 109
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a7/
LA  - en
ID  - IJAMCS_2022_32_1_a7
ER  - 
%0 Journal Article
%A Kaliszewska, Agnieszka
%A Syga, Monika
%T A comprehensive study of clustering a class of 2D shapes
%J International Journal of Applied Mathematics and Computer Science
%D 2022
%P 95-109
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a7/
%G en
%F IJAMCS_2022_32_1_a7
Kaliszewska, Agnieszka; Syga, Monika. A comprehensive study of clustering a class of 2D shapes. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 1, pp. 95-109. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a7/

[1] [1] Albasri, S., Popescu, M. and Keller, J.M. (2019). Surgery task classification using procrustes analysis, 48th IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2019, Washington, USA, pp. 1–6.

[2] [2] Aronov, B., Har-Peled, S., Knauer, C., Wang, Y. and Wenk, C. (2006). Fréchet distance for curves, revisited, in Y. Azar and T. Erlebach (Eds), Algorithms—ESA 2006, Springer, Berlin, pp. 52–63.

[3] [3] Auder, B. and Fischer, A. (2012). Projection-based curve clustering, Journal of Statistical Computation and Simulation 82(8): 1145–1168.

[4] [4] Borsuk, K. and Dydak, J. (1980). What is the theory of shape?, Bulletin of the Australian Mathematical Society 22(2): 161–198.

[5] [5] Cao, Y. and Mumford, D. (2002). Geometric structure estimation of axially symmetric pots from small fragments, Signal Processing, Pattern Recognition, and Applications, Crete, Greece.

[6] [6] Cohen-Addad, V., Kanade, V. and Mallmann-Trenn, F. (2018). Clustering redemption—Beyond the impossibility of Kleinberg’s axioms, Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 8526–8535.

[7] [7] Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F. and Mathieu, C. (2017). Hierarchical clustering: Objective functions and algorithms, Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, USA, pp. 378–397.

[8] [8] Davidson, I. and Ravi, S.S. (2007). Intractability and clustering with constraints, Proceedings of the 24th International Conference on Machine Learning, Corvalis, USA, pp. 201–208.

[9] [9] Dryden, I.L. (2000). Statistical shape analysis in archaeology, Spatial Statistics in Archaeology, Chieti, Italy.

[10] [10] Efrat, A., Fan, Q. and Venkatasubramanian, S. (2007). Curve matching, time warping, and light fields: New algorithms for computing similarity between curves, Journal of Mathematical Imaging and Vision 27(3): 203–216.

[11] [11] Eguizabal, A., Schreier, P.J. and Schmidt, J. (2019). Procrustes registration of two-dimensional statistical shape models without correspondences, CoRR abs/1911.11431.

[12] [12] Farris, J. (1969). On the cophenetic correlation coefficient, Systematic Zoology 18(3): 279–285.

[13] [13] da Fontoura Costa, L. and Cesar, R.M. (2010). Shape Analysis and Classification: Theory and Practice, CRC Press, Boca Raton.

[14] [14] Gilboa, A., Karasik, A., Sharon, I. and Smilansky, U. (2004). Towards computerized typology and classification of ceramics, Journal of Archaeological Science 31(6): 681–694.

[15] [15] Goodall, C. (1991). Procrustes methods in the statistical analysis of shape, Journal of the Royal Statistical Society B: Methodological 53(2): 285–339.

[16] [16] Gower, J.C. and Dijksterhuis, G.B. (2004). Procrustes Problems, Oxford University Press, Oxford.

[17] [17] Hosni, N., Drira, H., Chaieb, F. and Amor, B.B. (2018). 3D Gait recognition based on functional PCA on Kendall’s shape space, 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, pp. 2130–2135.

[18] [18] Hristov, V. and Agre, G. (2013). A software system for classification of archaeological artefacts represented by 2D plans, Cybernetics and Information Technologies 13(2): 82–96.

[19] [19] Jain, A.K. (2010). Data clustering: 50 Years beyond k-means, Pattern Recognition Letters 31(8): 651–666.

[20] [20] Kaliszewska, A. and Syga, M. (2018). On representative functions method for clustering of 2D contours with application to pottery fragments typology, Control and Cybernetics 47(1): 85–108.

[21] [21] Kanevski, M. and Timonin, V. (2010). Machine learning analysis and modeling of interest rate curves, ESANN 2010: European Symposium on Artificial Neural Networks—Computational Intelligence and Machine Learning, Bruges, Belgium, pp. 47–52.

[22] [22] Kendall, D.G. (1977). The diffusion of shape, Advances in Applied Probability 9(3): 428–430.

[23] [23] Kendall, D.G. (1989). A survey of the statistical theory of shape, Statistical Science 4(2): 87–99.

[24] [24] Kleinberg, J. (2002). An impossibility theorem for clustering, Proceedings of the 15th International Conference on Neural Information Processing Systems, NIPS’02, Vancouver, Canada, p. 463–470.

[25] [25] Kotan, M., Öz, C. and Kahraman, A. (2021). A linearization-based hybrid approach for 3D reconstruction of objects in a single image, International Journal of Applied Mathematics and Computer Science 31(3): 501–513, DOI: 10.34768/amcs-2021-0034.

[26] [26] Leski, J.M. and Kotas, M.P. (2018). Linguistically defined clustering of data, International Journal of Applied Mathematics and Computer Science 28(3): 545–557, DOI: 10.2478/amcs-2018-0042.

[27] [27] Maiza, C. and Gaildart, V. (2005). Automatic classification of archaeological potsherds, 8th International Conference on Computer Graphics and Artificial Intelligence, 3IA’2005, Limoges, France, pp. 11–12.

[28] [28] Müller, M. (2007). Information Retrieval for Music and Motion, Springer, Berlin/Heidelberg.

[29] [29] Mountjoy, P.A. (1999). Regional Mycenaean Decorated Pottery, Deutsches Archäologisches Institut, Berlin.

[30] [30] Mumford, D. (1991). Mathematical theories of shape: Do they model perception?, Geometric Methods in Computer Vision, San Diego, USA, pp. 2–10.

[31] [31] Palacio-Niño, J. and Berzal, F. (2019). Evaluation metrics for unsupervised learning algorithms, CoRR abs/1905.05667.

[32] [32] Piccoli, C., Aparajeya, P., Papadopoulos, G.T., Bintliff, J., Leymarie, F., Bes, P., Van der Enden, M., P.J. and Daras, P. (2015). Towards the automatic classification of pottery sherds: Two complementary approaches, in A. Traviglia (Ed.), Across Space and Time, Amsterdam University Press, Amsterdam, pp. 463–474.

[33] [33] Pizarro, D. and Bartoli, A. (2011). Global optimization for optimal generalized procrustes analysis, CVPR’11: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, pp. 2409–2415.

[34] [34] Sablatnig, R., Menard, C. and Kropatsch, W. (1998). Classification of archaeological fragments using a description language, European Association for Signal Processing (EUSIPCO), Rhodes, Greece, Vol. 2, pp. 1097–1100.

[35] [35] Sangalli, L.M., Secchi, P., Vantini, S. and Vitelli, V. (2010). Classification of functional data: Unsupervised curve clustering when curves are misaligned, 2010 JSM Proceedings, Vancouver, Canada, pp. 4034–4047.

[36] [36] Sangalli, L.M., Secchi, P., Vantini, S. and Vitelli, V. (2012). Joint clustering and alignment of functional data: An application to vascular geometries, in. A. Di Ciaccio et al. (Eds.), Advanced Statistical Methods for the Analysis of Large DataSets, Springer, Berlin/Heidelberg, pp. 34–43.

[37] [37] Sharon, E. and Mumford, D. (2006). 2D-shape analysis using conformal mapping, International Journal of Computer Vision 70(1): 55–75.

[38] [38] Siminski, K. (2021). An outlier-robust neuro-fuzzy system for classification and regression, International Journal of Applied Mathematics and Computer Science 31(2): 303–319, DOI:10.34768/amcs-2021-0021.

[39] [39] Sokal, R.R. and Rohlf, J.F. (1962). The comparison of dendrograms by objective methods, Taxon 11(2): 33–40.

[40] [40] Vogogias, A., Kennedy, J., Archambault, D., Smith, V.A. and Currant, H. (2016). MLCut: Exploring multi-level cuts in dendrograms for biological data, in C. Turkay and T.R. Wan (Eds), Computer Graphics and Visual Computing, Eurographics Association, Geneve.

[41] [41] Wierzchoń, S.T. and Kłopotek, M.A. (2015). Algorithms of Cluster Analysis, Information Technologies: Research and Their Interdisciplinary Applications 3, Polish Academy of Sciences, Warsaw.

[42] [42] Wilczek, J., Monna, F., Navarro, N. and Chateau-Smith, C. (2021). A computer tool to identify best matches for pottery fragments, Journal of Archaeological Science: Reports 37: 102891.

[43] [43] Zhou, F. and De la Torre, F. (2012). Generalized time warping for multi-modal alignment of human motion, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, pp. 1282–1289.