Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_1_a4, author = {Majdzik, Pawe{\l}}, title = {A feasible schedule for parallel assembly tasks in flexible manufacturing systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {51--63}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a4/} }
TY - JOUR AU - Majdzik, Paweł TI - A feasible schedule for parallel assembly tasks in flexible manufacturing systems JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 51 EP - 63 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a4/ LA - en ID - IJAMCS_2022_32_1_a4 ER -
%0 Journal Article %A Majdzik, Paweł %T A feasible schedule for parallel assembly tasks in flexible manufacturing systems %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 51-63 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a4/ %G en %F IJAMCS_2022_32_1_a4
Majdzik, Paweł. A feasible schedule for parallel assembly tasks in flexible manufacturing systems. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 1, pp. 51-63. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a4/
[1] [1] Baccelli, F., Cohen, G., Olsder, G.J. and Quadrat, J.-P. (1992). Synchronization and Linearity: An Algebra for Discrete Event Systems, John Wiley Sons, Hoboken.
[2] [2] Baruwa, O.T., Piera, M.A. and Guasch, A. (2015). Deadlock-free scheduling method for flexible manufacturing systems based on timed colored Petri nets and anytime heuristic search, IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(5): 1–12.
[3] [3] Butkovic, P. (2010). Max-Linear Systems: Theory and Algorithms, Springer, London.
[4] [4] Dizdar, E.N. and Koçar, O. (2020). Fuzzy logic-based decision-making system design for safe forklift truck speed: Cast cobblestone production application, Soft Computing 24(19): 1–14.
[5] [5] Ebrahimi, A., Sajadi, S., Roshanzamir, P. and Azizi, M. (2015). Determining the optimal performance of flexible manufacturing systems using network analysis and simulation process, International Journal of Management, Economics and and Social Sciences 4(1): 12–17.
[6] [6] Groover, M. (2014). Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd Edition, Pearson, London.
[7] [7] Kopetz, H. (2011). Real-Time Systems: Design Principles for Distributed Embedded Applications, Springer, Boston.
[8] [8] Madakam, S., Ramaswamy R. and Tripathi, S. (2015). Internet of things (IoT): A literature review, Journl of Computing and Communications 3(05): 164.
[9] [9] Majdzik, P. (2020). Feasible schedule under faults in the assembly system, 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, pp. 1049–1054.
[10] [10] Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R. and Mrugalska, B. (2016). A fault-tolerant approach to the control of a battery assembly system, Control Engineering Practice 55: 139–148.
[11] [11] Majdzik, P., Witczak, M., Lipiec, B. and Banaszak, Z. (2021). Integrated fault-tolerant control of assembly and automated guided vehicle-based transportation layers, International Journal of Computer Integrated Manufacturing: 1–18, DOI: 10.1080/0951192X.2021.1872103.
[12] [12] Mircetic, D., Ralevic, N., Nikolicic, S., Maslaric, M. and Stojanovic, D. (2016). Expert system models for forecasting forklifts engagement in a warehouse loading operation: A case study, PROMET— Traffic 28(4): 393–401.
[13] [13] Nivolianitou, Z. and Konstantinidou, M. (2018). A fuzzy modeling application for human reliability analysis in the process industry, in H. Pham (Ed.), Human Factors and Reliability Engineering for Safety and Security in Critical Infrastructures, Springer, London, pp. 109–154.
[14] [14] RAFI GmbH Co. KG (2021). KIS.ME User Manual, RAFI GmbH Co. KG, Berg, https://kisme.rafi.de/ documents/KISME-UserManual.pdf.
[15] [15] Rousset, A., Herrmann, B., Lang, C. and Philippe, L. (2016). A survey on parallel and distributed multi-agent systems for high performance computing simulations, Computer Science Review 22: 27–46.
[16] [16] Rutkowski, T., Łapa, K. and Nielek, R. (2019). On explainable fuzzy recommenders and their performance evaluation, International Journal of Applied Mathematics and Computer Science 29(3): 595–610, DOI: 10.2478/amcs-2019-0044.
[17] [17] Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
[18] [18] Segura, M.A., Hennequin, S. and Finel, B. (2016). Human factor modelled by fuzzy logic in preventive maintenance actions, International Journal of Operational Research 27(1–2): 316–340.
[19] [19] Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849–862, DOI: 10.1515/amcs-2015-0061.
[20] [20] Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135–156.
[21] [21] Van Den Boom, T. and De Schutter, B. (2006). Modelling and control of discrete event systems using switching max-plus-linear systems, Control Engineering Practice 14(10): 1199–1211.
[22] [22] Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Springer, Heidelberg.
[23] [23] Witczak, M., Majdzik, P., Stetter, R. and Lipiec, B. (2019). Multiple AGV fault-tolerant within an agile manufacturing warehouse, IFAC-PapersOnLine 52(13): 1914–1919.
[24] [24] Witczak, M., Majdzik, P., Stetter, R. and Lipiec, B. (2020). A fault-tolerant control strategy for multiple automated guided vehicles, Journal of Manufacturing Systems 55(4): 56–68.