Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_1_a2, author = {Cao, Shuhan and Shao, Hu and Shao, Feng}, title = {Sensor location for travel time estimation based on the user equilibrium principle: {Application} of linear equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {23--33}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a2/} }
TY - JOUR AU - Cao, Shuhan AU - Shao, Hu AU - Shao, Feng TI - Sensor location for travel time estimation based on the user equilibrium principle: Application of linear equations JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 23 EP - 33 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a2/ LA - en ID - IJAMCS_2022_32_1_a2 ER -
%0 Journal Article %A Cao, Shuhan %A Shao, Hu %A Shao, Feng %T Sensor location for travel time estimation based on the user equilibrium principle: Application of linear equations %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 23-33 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a2/ %G en %F IJAMCS_2022_32_1_a2
Cao, Shuhan; Shao, Hu; Shao, Feng. Sensor location for travel time estimation based on the user equilibrium principle: Application of linear equations. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a2/
[1] [1] Asudegi, M. and Haghani, A. (2013). Optimal number and location of node-based sensors for collection of travel time data in networks, Transportation Research Record: Journal of the Transportation Research Board 2338(1): 35–43.
[2] [2] Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang, Y.-H. (2019). Cooperative adaptive driving for platooning autonomous self driving based on edge computing, International Journal of Applied Mathematics and Computer Science 29(2): 213–225, DOI: 10.2478/amcs-2019-0016.
[3] [3] Chen, A., Chootinan, P. and Pravinvongvuth, S. (2004). Multiobjective model for locating automatic vehicle identification readers, Transportation Research Record: Journal of the Transportation Research Board 1886(1): 49–58.
[4] [4] Gentili, M. and Mirchandani, P.B. (2018). Review of optimal sensor location models for travel time estimation, Transportation Research C: Emerging Technologies 90: 74–96.
[5] [5] Haghani, A., Hamedi, M., Sadabadi, K., Young, S. and Tarnoff, P. (2010). Data collection of freeway travel time ground truth with Bluetooth sensors, Transportation Research Record: Journal of the Transportation Research Board 2160(1): 60–68.
[6] [6] Li, X. and Ouyang, Y. (2012). Reliable traffic sensor deployment under probabilistic disruptions and generalized surveillance effectiveness measures, Operations Research 60(5): 1183–1198.
[7] [7] Mazaré, P., Tossavainen, O. and Bayen, A. (2012). Trade-offs between inductive loops and GPS probe vehicles for travel time estimation: Mobile century case study, Transportation Research Board 91st Annual Meeting, Washington DC, USA, Paper no. 2746.
[8] [8] Patan, M. and Kowalów, D. (2018). Distributed scheduling of measurements in a sensor network for parameter estimation of spatio-temporal systems, International Journal of Applied Mathematics and Computer Science 28(1): 39–54, DOI: 10.2478/amcs-2018-0003.
[9] [9] Sánchez-Cambronero, S., Jiménez, P., Rivas, A. and Gallego, I. (2017). Plate scanning tools to obtain travel times in traffic networks, Journal of Intelligent Transportation Systems 21(5): 390–408.
[10] [10] Sherali, H.D., Desai, J. and Rakha, H. (2006). A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times, Transportation Research B: Methodological 40(10): 857–871.
[11] [11] Soriguera, F., Thorson, L. and Robusté, F. (2007). Travel time measurement using toll infrastructure, Transportation Research Record: Journal of the Transportation Research Board 2027(1): 99–107.
[12] [12] Sun, W., Shen, L., Shao, H. and Liu, P. (2021). Dynamic location models of mobile sensors for travel time estimation on a freeway, International Journal of Applied Mathematics and Computer Science 31(2): 271–287, DOI: 10.34768/amcs-2021-0019.
[13] [13] Wardorp, J. (1952). Some theoretical aspects of road traffic research, ICE Proceedings Engineering Divisions 1(5): 767–768.
[14] [14] Zhu, N., Liu, Y., Ma, S. and He, Z. (2014). Mobile traffic sensor routing in dynamic transportation systems, IEEE Transactions on Intelligent Transportation Systems 15(5): 2273–2285.
[15] [15] Zhu, N., Ma, S. and Zheng, L. (2017). Travel time estimation oriented freeway sensor placement problem considering sensor failure, Journal of Intelligent Transportation Systems 21(1): 26–40.