Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2022_32_1_a1, author = {Liu, Guangyu and Wu, Shangliang and Zhu, Ling and Wang, Jiajun and Lv, Qiang}, title = {Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {11--21}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a1/} }
TY - JOUR AU - Liu, Guangyu AU - Wu, Shangliang AU - Zhu, Ling AU - Wang, Jiajun AU - Lv, Qiang TI - Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction JO - International Journal of Applied Mathematics and Computer Science PY - 2022 SP - 11 EP - 21 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a1/ LA - en ID - IJAMCS_2022_32_1_a1 ER -
%0 Journal Article %A Liu, Guangyu %A Wu, Shangliang %A Zhu, Ling %A Wang, Jiajun %A Lv, Qiang %T Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction %J International Journal of Applied Mathematics and Computer Science %D 2022 %P 11-21 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a1/ %G en %F IJAMCS_2022_32_1_a1
Liu, Guangyu; Wu, Shangliang; Zhu, Ling; Wang, Jiajun; Lv, Qiang. Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a1/
[1] [1] Aguilar-Ibanez, C. and Suarez-Castanon, M.S. (2019). A trajectory planning based controller to regulate an uncertain 3D overhead crane system, International Journal of Applied Mathematics and Computer Science 29(4): 693–702, DOI: 10.2478/amcs-2019-0051.
[2] [2] Berselli, G., Balugani, F., Pellicciari, M. and Gadaleta, M. (2016). Energy-optimal motions for servo-systems: A comparison of spline interpolants and performance indexes using a CAD-based approach, Robotics and ComputerIntegrated Manufacturing 40: 55–65.
[3] [3] Boor, C.D. and Fix, G.J. (1973). Spline approximation by quasi-interpolants, Journal of Approximation Theory 8(1): 19–45.
[4] [4] Cheon, H. and Kim, B.K. (2019). Online bidirectional trajectory planning for mobile robots in state-time space, IEEE Transactions on Industrial Electronics 66(6): 4555–4565.
[5] [5] Cui, L., Wang, H. and Chen, W. (2020). Trajectory planning of a spatial flexible manipulator for vibration suppression, Robotics and Autonomous Systems 123: 1–11, Paper no. 103316.
[6] [6] Desai, A., Collins, M. and Michael, N. (2019). Efficient kinodynamic multi-robot replanning in known workspaces, 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 1021–1027.
[7] [7] Fahroo, F. and Ross, I.M. (2000). Direct trajectory optimization by a Chebyshev pseudospectral method, Proceedings of the 2000 American Control Conference, Chicago, USA, Vol. 6, pp. 3860–3864.
[8] [8] Fang, Y., Qi, J., Hu, J., Wang, W. and Peng, Y. (2020). An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints, Mechanism and Machine Theory 153: 1–22, Paper no. 103957.
[9] [9] Gong, Q., Kang, W. and Ross, I.M. (2006). A pseudospectral method for the optimal control of constrained feedback linearizable systems, IEEE Transactions on Automatic Control 51(7): 1115–1129.
[10] [10] Heidari, H. and Saska, M. (2020). Trajectory planning of quadrotor systems for various objective functions, Robotica 39(1): 137–152.
[11] [11] Kim, J. (2020). Trajectory generation of a two-wheeled mobile robot in an uncertain environment, IEEE Transactions on Industrial Electronics 67(7): 5586–5594.
[12] [12] Kroger, T. and Wahl, F.M. (2010). Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events, IEEE Transactions on Robotics 26(1): 94–111.
[13] [13] Li, J., Ran, M. and Xie, L. (2021). Efficient trajectory planning for multiple non-holonomic mobile robots via prioritized trajectory optimization, IEEE Robotics and Automation Letters 6(2): 405–412.
[14] [14] Liu, C., Zhang, C. and Xiong, F. (2020). Multistage cooperative trajectory planning for multimissile formation via bi-level sequential convex programming, IEEE Access 8: 22834–22853.
[15] [15] Liu, P., Han, Y., Wang, W., Liu, X. and Liu, J. (2018). Maneuvering trajectory planning during the whole phase based on piecewise Radau pseudospectral method, Proceedings of the 37th Chinese Control Conference, Wuhan, China, pp. 4627–4632.
[16] [16] Liu, Y., Zhang, Z., Wu, Z., Liu, F. and Li, X. (2021). Multiobjective preimpact trajectory-planning of space manipulator for self-assembling a heavy payload, International Journal of Advanced Robotic Systems 18(1): 1–22, Paper no. 1729881421990285.
[17] [17] Mercy, T., Hostens, E. and Pipeleers, G. (2018). Online motion planning for autonomous vehicles in vast environments, 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, pp. 114–119.
[18] [18] Muscio, G., Pierri, F., Trujillo, M.A., Cataldi, E., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., and Ollero, A. (2018). Coordinated control of aerial robotic manipulators: Theory and experiments, IEEE Transactions on Control Systems Technology 26(4): 1406–1413.
[19] [19] Park, J. and Kim, H.J. (2021). Online trajectory planning for multiple quadrotors in dynamic environments using relative safe flight corridor, IEEE Robotics and Automation Letters 6(2): 659–666.
[20] [20] Powell, M.J.D. (1981). Approximation Theory and Methods, Cambridge University Press, Cambridge.
[21] [21] Qian, Y., Yuan, J. and Wan, W. (2020). Improved trajectory planning method for space robot-system with collision prediction, Journal of Intelligent and Robotic System 99(11): 289–302.
[22] [22] Rousseau, G., Maniu, C.S., Tebbani, S., Babel, M. and Martin, N. (2019). Minimum-time B-spline trajectories with corridor constraints: Application to cinematographic quadrotor flight plans, Control Engineering Practice 89: 190–203.
[23] [23] Schoenberg, I.J. (1969). Approximations with Special Emphasis on Spline Functions, Academic Press, Madison.
[24] [24] Spedicato, S. and Notarstefano, G. (2018). Minimum-time trajectory generation for quadrotors in constrained environments, IEEE Transactions on Control Systems Technology 26(4): 1335–1344.
[25] [25] Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0020.
[26] [26] Tatematsu, N. and Ohnishi, K. (2003). Tracking motion of mobile robot for moving target using NURBS curve, IEEE International Conference on Industrial Technology, Maribor, Slovenia, Vol. 1, pp. 245–249.
[27] [27] Tho, H.D., Kaneshige, A. and Terashima, K. (2020). Minimum-time s-curve commands for vibration-free transportation of an overhead crane with actuator limits, Control Engineering Practice 98: 1–12, Paper no. 104390.
[28] [28] Wang, M., Xiao, J., Zeng, F. and Wang, G. (2020). Research on optimized time-synchronous online trajectory generation method for a robot arm, Robotics and Autonomous Systems 126: 1–12, Paper no. 103453, DOI: 10.1016/j.robot.2020.103453.
[29] [29] Wang, Y., Ueda, K. and Bortoff, S.A. (2013). A Hamiltonian approach to compute an energy efficient trajectory for a servomotor system, Automatica 49(12): 3550–3561.
[30] [30] Yu, L., Wang, K., Zhang, Q. and Zhang, J. (2020). Trajectory planning of a redundant planar manipulator based on joint classification and particle swarm optimization algorithm, Multibody System Dynamic 50(4): 25–43.
[31] [31] Zhang, S., Zanchettin, A.M., Villa, R. and and Dai, S. (2020). Real-time trajectory planning based on joint-decoupled optimization in human-robot interaction, Mechanism and Machine Theory 144, Paper no. 103664, DOI: 10.1016/j.mechmachtheory.2019.103664.