Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices
International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 1, pp. 5-10.

Voir la notice de l'article provenant de la source Library of Science

The global stability of discrete-time nonlinear systems with descriptor positive linear parts, positive scalar feedbacks and interval state matrices is addressed. Sufficient conditions for the global stability of this class of nonlinear systems are established. The effectiveness of these conditions is illustrated using numerical examples.
Keywords: global stability, positive system, nonlinear system, discrete-time system
Mots-clés : stabilność globalna, układ dodatni, układ nieliniowy, układ czasu dyskretnego
@article{IJAMCS_2022_32_1_a0,
     author = {Kaczorek, Tadeusz and Ruszewski, Andrzej},
     title = {Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a0/}
}
TY  - JOUR
AU  - Kaczorek, Tadeusz
AU  - Ruszewski, Andrzej
TI  - Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2022
SP  - 5
EP  - 10
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a0/
LA  - en
ID  - IJAMCS_2022_32_1_a0
ER  - 
%0 Journal Article
%A Kaczorek, Tadeusz
%A Ruszewski, Andrzej
%T Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices
%J International Journal of Applied Mathematics and Computer Science
%D 2022
%P 5-10
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a0/
%G en
%F IJAMCS_2022_32_1_a0
Kaczorek, Tadeusz; Ruszewski, Andrzej. Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices. International Journal of Applied Mathematics and Computer Science, Tome 32 (2022) no. 1, pp. 5-10. http://geodesic.mathdoc.fr/item/IJAMCS_2022_32_1_a0/

[1] [1] Berman, A. and Plemmons, R. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia.

[2] [2] Borawski, K. (2017). Modification of the stability and positivity of standard and descriptor linear electrical circuits by state feedbacks, Electrical Review 93(11): 176–180.

[3] [3] Dai, L. (1989). Singular Control Systems, Springer, Berlin.

[4] [4] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, Wiley, New York.

[5] [5] Gluck, J. and Mironchenko, A. (2020). Stability criteria for positive linear discrete-time systems, arXiv 2011.02251.

[6] [6] Kaczorek, T. (2011). Selected Problems of Fractional System Theory, Springer, Berlin.

[7] [7] Kaczorek, T. (2019a). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.

[8] [8] Kaczorek, T. (2019b). Global stability of nonlinear feedback systems with positive linear parts, International Journal of Nonlinear Sciences and Numerical Simulation 20(5): 575–579.

[9] [9] Kaczorek, T. (2020). Global stability of positive standard and fractional nonlinear feedback systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 68(2): 285–288.

[10] [10] Kaczorek, T. (2021). New sufficient conditions of global stability of nonlinear positive electrical circuits, in R. Szewczyk et al. (Eds), Recent Achievements in Automation, Robotics and Measurement Techniques: Automation 2021, Springer, Cham, pp. 3–9.

[11] [11] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, New York.

[12] [12] Kharitonov, V. (1978). Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differentsialnye Uravneniya 14(11): 2086–2088, (in Russian).

[13] [13] Leipholz, H. (1970). Stability Theory, Academic Press, New York.

[14] [14] Lyapunov, A. (1963). General Problem of Stable Movement, Gostechizdat, Moscow, (in Russian).

[15] [15] Rami, M. and Napp, D. (2012). Characterization and stability of autonomous positive descriptor systems, IEEE Transactions on Automatic Control 57(10): 2668–2673.

[16] [16] Sajewski, Ł. (2017). Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 709–714.

[17] [17] Si, X., Yang, H. and Ivanov, I.G. (2021). Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems, International Journal of Applied Mathematics and Computer Science 31(1): 17–28, DOI: 10.34768/amcs-2021-0002.

[18] [18] Virnik, E. (2008). Stability analysis of positive descriptor systems, Linear Algebra and Its Applications 429(10): 2640–2659.