Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_4_a6, author = {Kaczorek, Tadeusz}, title = {Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {627--633}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a6/} }
TY - JOUR AU - Kaczorek, Tadeusz TI - Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 627 EP - 633 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a6/ LA - en ID - IJAMCS_2021_31_4_a6 ER -
%0 Journal Article %A Kaczorek, Tadeusz %T Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 627-633 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a6/ %G en %F IJAMCS_2021_31_4_a6
Kaczorek, Tadeusz. Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 627-633. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a6/
[1] [1] Gantmacher, F.R. (1959). The Theory of Matrices, Chelsea, London.
[2] [2] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.
[3] [3] Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.
[4] [4] Kaczorek, T. (2011b). Selected Problems of Fractional Systems Theory, Springer, Berlin.
[5] [5] Kaczorek, T. (2012). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.
[6] [6] Kaczorek, T. (2015). Stability of fractional positive nonlinear systems, Archives of Control Sciences 25(4): 491–496.
[7] [7] Kaczorek, T. (2016). Analysis of positivity and stability of fractional discrete-time nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(3): 491–494.
[8] [8] Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.
[9] [9] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
[10] [10] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier Science, New York.
[11] [11] Ostalczyk, P. (2016). Discrete Fractional Calculus, World Scientific, River Edgle.
[12] [12] Podlubny, I.(1999). Fractional Differential Equations, Academic Press, San Diego.
[13] [13] Ruszewski, A. (2019a). Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences 29(3): 549–567.
[14] [14] Ruszewski, A. (2019b). Practical and asymptotic stabilities for a class of delayed fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 67(3): 509–515.
[15] [15] Sajewski, L. (2017a). Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays, 22nd International Conference a Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 482–487.
[16] [16] Sajewski, L.(2017b). Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 709–714.