Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems
International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 627-633.

Voir la notice de l'article provenant de la source Library of Science

The divisibility of the second-order minors of the numerators of transfer matrices by their minimal denominators for cyclic fractional linear systems is analyzed. It is shown that all nonzero second-order minors of the numerators of the transfer matrices are divisible by their minimal denominators if and only if the system matrices of fractional standard and descriptor linear systems are cyclic. The theorems are illustrated by examples of fractional standard and descriptor linear systems.
Keywords: divisibility, second order minor, transfer matrix, cyclic system, fractional system, linear system
Mots-clés : podzielność, macierz transferu, układ cykliczny, układ ułamkowy, układ liniowy
@article{IJAMCS_2021_31_4_a6,
     author = {Kaczorek, Tadeusz},
     title = {Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {627--633},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a6/}
}
TY  - JOUR
AU  - Kaczorek, Tadeusz
TI  - Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2021
SP  - 627
EP  - 633
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a6/
LA  - en
ID  - IJAMCS_2021_31_4_a6
ER  - 
%0 Journal Article
%A Kaczorek, Tadeusz
%T Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems
%J International Journal of Applied Mathematics and Computer Science
%D 2021
%P 627-633
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a6/
%G en
%F IJAMCS_2021_31_4_a6
Kaczorek, Tadeusz. Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 627-633. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a6/

[1] [1] Gantmacher, F.R. (1959). The Theory of Matrices, Chelsea, London.

[2] [2] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.

[3] [3] Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.

[4] [4] Kaczorek, T. (2011b). Selected Problems of Fractional Systems Theory, Springer, Berlin.

[5] [5] Kaczorek, T. (2012). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.

[6] [6] Kaczorek, T. (2015). Stability of fractional positive nonlinear systems, Archives of Control Sciences 25(4): 491–496.

[7] [7] Kaczorek, T. (2016). Analysis of positivity and stability of fractional discrete-time nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(3): 491–494.

[8] [8] Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.

[9] [9] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.

[10] [10] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier Science, New York.

[11] [11] Ostalczyk, P. (2016). Discrete Fractional Calculus, World Scientific, River Edgle.

[12] [12] Podlubny, I.(1999). Fractional Differential Equations, Academic Press, San Diego.

[13] [13] Ruszewski, A. (2019a). Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences 29(3): 549–567.

[14] [14] Ruszewski, A. (2019b). Practical and asymptotic stabilities for a class of delayed fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 67(3): 509–515.

[15] [15] Sajewski, L. (2017a). Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays, 22nd International Conference a Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 482–487.

[16] [16] Sajewski, L.(2017b). Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 709–714.