Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_4_a5, author = {Emirsaj{\l}ow, Zbigniew}, title = {Discrete-time output observers for boundary control systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {613--626}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a5/} }
TY - JOUR AU - Emirsajłow, Zbigniew TI - Discrete-time output observers for boundary control systems JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 613 EP - 626 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a5/ LA - en ID - IJAMCS_2021_31_4_a5 ER -
%0 Journal Article %A Emirsajłow, Zbigniew %T Discrete-time output observers for boundary control systems %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 613-626 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a5/ %G en %F IJAMCS_2021_31_4_a5
Emirsajłow, Zbigniew. Discrete-time output observers for boundary control systems. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 613-626. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a5/
[1] [1] Bartecki, K. (2020). Approximate state-space and transfer function models for 2×2 linear hyperbolic systems with collocated boundary inputs, International Journal of Applied Mathematics and Computer Science 30(3): 475–491, DOI: 10.34768/amcs-2020-0035.
[2] [2] Cheng, A. and Morris, K. (2003). Well-posedness of boundary control systems, SIAM Journal on Control and Optimization 42(4): 1244–1265.
[3] [3] Curtain, R. and Oostveen, J. (1997). Bilinear transformations between discrete-time and continuous-time infinite-dimensional systems, Proceedings of the International Conference on Methods and Models in Automation and Robotics, MMAR 1997, Międzyzdroje, Poland, pp. 861–870.
[4] [4] Curtain, R. and Zwart, H. (2020). Introduction to Infinite-Dimensional Systems Theory: A State-Space Approach, Springer, New York.
[5] [5] Demetriou, M. (2013). Disturbance-decoupling observers for a class of second order distributed parameter systems, Proceedings of the 2013 American Control Conference, ACC 2013, Washington, USA, pp. 1302–1307.
[6] [6] Demetriou, M. and Rosen, I. (2005). Unknown input observers for a class of distributed parameter systems, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC/ECC 2005, Seville, Spain, pp. 3874–3879.
[7] [7] Dubljevic, S. and Humaloja, J.-P. (2020). Model predictive control for regular linear systems, Automatica 119(6): 1–9, DOI:10.1016/j.automatica.2020.109066.
[8] [8] Emirsajłow, Z. (2012). Infinite-dimensional Sylvester equations: Basic theory and applications to observer design, International Journal of Applied Mathematics and Computer Scienes 22(2): 245–257, DOI: 10.2478/v10006-012-0018-5.
[9] [9] Emirsajłow, Z. (2020). Boundary observers for boundary control systems, in A. Bartoszewicz et al. (Eds), Advanced, Contemporary Control, Springer, Cham, pp. 92–104.
[10] [10] Emirsajłow, Z. (2021). Output observers for linear infinite-dimensional control systems, in P. Kulczycki et al. (Eds), Automatic Control, Robotics and Information Processing, Springer, Cham, pp. 67–92.
[11] [11] Emirsajłow, Z. and Townley, S. (2000). From PDEs with boundary control to the abstract state equation with an unbounded input operator: Tutorial, European Journal of Control 7(1): 1–23.
[12] [12] Ferrante, F., Cristofaro, A. and Prieur, C. (2020). Boundary observer design for cascaded ODE–hyperbolic PDE systems: A matrix inequalities approach, Automatica 119: 1–9, DOI: 10.1016/j.automatica.2020.109027.
[13] [13] Grabowski, P. (2021). Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedback control systems, International Journal of Applied Mathematics and Computer Science 31(2): 195–218, DOI: 10.34768/amcs-2021-0014.
[14] [14] Guo, B. and Zwart, H. (2006). On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform, Integral Equations and Operator Theory 54(3): 349–383.
[15] [15] Hasana, A., Aamoa, O. and Krstic, M. (2016). Boundary observer design for hyperbolic PDE–ODE cascade systems, Automatica 68: 75–86, DOI: 10.1016/j.automatica.2016.01.058.
[16] [16] Havu, V. and Malinen, J. (2007). The Cayley transform as a time discretization scheme, Integral Equations and Operator Theory 28(7): 825–851.
[17] [17] Hidayat, Z., Babuska, R., De Schutter, B. and Nunez, A. (2011). Observers for linear distributed-parameter systems: A survey, Proceedings of the 2011 IEEE International Symposium on Robotic and Sensors Environments, Montreal, Canada, pp. 166–171.
[18] [18] Huang, J., Liu, A. and Chen, A. (2016). Spectra of 2×2 upper triangular operator matrices, Filomat 30(13): 3587–3599, DOI: 10.2298/FIL1613587H.
[19] [19] Kythe, P. (2011). Green Functions and Linear Differential Equations, Theory, Applications and Computations, Chapman Hall/CRC, Boca Raton.
[20] [20] Mitkowski, W., Bauer, W. and Zagórowska, M. (2017). Discrete-time feedback stabilization, Archives of Control Sciences 27(2): 309–322.
[21] [21] Ober, R. and Montgomery-Smith, S. (1990). Bilnear transformation of infinite-dimensional state-space systems and balanced realizations of nonrational transfer functions, SIAM Journal on Control and Optimization 28(2): 438–465.
[22] [22] Oprzędkiewicz, K. and Mitkowski, W. (2018). A memory-efficient noninteger-order discrete-time state-space model of a heat transfer process, International Journal of Applied Mathematics and Computer Science 28(4): 649–659, DOI: 10.2478/amcs-2018-0050.
[23] [23] Smyshlyaev, A. and Krstic, M. (2005). Backstepping observer for a class of parabolic PDEs, Systems and Control Letters 54(7): 613–625.
[24] [24] Smyshlyaev, A. and Krstic, M. (2008). Boundary Control of PDEs: A Course on Backstepping Designs, SIAM, Philadelphia.
[25] [25] Trinh, H. and Fernando, T. (2012). Functional Observers for Dynamical Systems, Springer, Berlin.
[26] [26] Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser, Basel.
[27] [27] Vries, D., Keesman, K. and Zwart, H. (2010). Luenberger boundary observer synthesis for Sturm–Liouville systems, International Journal of Control 83(7): 1503–1514.
[28] [28] Xie, J., Koch, C. and Dubljevic, S. (2021). Discrete-time model-based output regulation of fluid flow systems, European Journal of Control 57: 1–13, DOI: 10.1016/j.ejcon.2020.10.005.