An effective data reduction model for machine emergency state detection from big data tree topology structures
International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 601-611.

Voir la notice de l'article provenant de la source Library of Science

This work presents an original model for detecting machine tool anomalies and emergency states through operation data processing. The paper is focused on an elastic hierarchical system for effective data reduction and classification, which encompasses several modules. Firstly, principal component analysis (PCA) is used to perform data reduction of many input signals from big data tree topology structures into two signals representing all of them. Then the technique for segmentation of operating machine data based on dynamic time distortion and hierarchical clustering is used to calculate signal accident characteristics using classifiers such as the maximum level change, a signal trend, the variance of residuals, and others. Data segmentation and analysis techniques enable effective and robust detection of operating machine tool anomalies and emergency states due to almost real-time data collection from strategically placed sensors and results collected from previous production cycles. The emergency state detection model described in this paper could be beneficial for improving the production process, increasing production efficiency by detecting and minimizing machine tool error conditions, as well as improving product quality and overall equipment productivity. The proposed model was tested on H-630 and H-50 machine tools in a real production environment of the Tajmac-ZPS company.
Keywords: OPC UA, OPC tree, principal component analysis, PCA, big data analysis, data reduction, machine tool, anomaly detection, emergency states
Mots-clés : OPC UA, PCA, analiza głównych składowych, duży zbiór danych, redukcja danych, wykrywanie anomalii, stan nadzwyczajny
@article{IJAMCS_2021_31_4_a4,
     author = {Iaremko, Iaroslav and Senkerik, Roman and Jasek, Roman and Lukastik, Petr},
     title = {An effective data reduction model for machine emergency state detection from big data tree topology structures},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {601--611},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a4/}
}
TY  - JOUR
AU  - Iaremko, Iaroslav
AU  - Senkerik, Roman
AU  - Jasek, Roman
AU  - Lukastik, Petr
TI  - An effective data reduction model for machine emergency state detection from big data tree topology structures
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2021
SP  - 601
EP  - 611
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a4/
LA  - en
ID  - IJAMCS_2021_31_4_a4
ER  - 
%0 Journal Article
%A Iaremko, Iaroslav
%A Senkerik, Roman
%A Jasek, Roman
%A Lukastik, Petr
%T An effective data reduction model for machine emergency state detection from big data tree topology structures
%J International Journal of Applied Mathematics and Computer Science
%D 2021
%P 601-611
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a4/
%G en
%F IJAMCS_2021_31_4_a4
Iaremko, Iaroslav; Senkerik, Roman; Jasek, Roman; Lukastik, Petr. An effective data reduction model for machine emergency state detection from big data tree topology structures. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 601-611. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a4/

[1] [1] Abdi, H. and Williams, L.J. (2010). Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2(4): 433–459.

[2] [2] Bansal, K. and Bansal, M. (2016). Data clustering and visualization based various machine learning techniques, International Journal of Advanced Research in Computer Science 7(6): 124–128.

[3] [3] Bartenhagen, C., Klein, H.-U., Ruckert, C., Jiang, X. and Dugas, M. (2010). Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, BMC Bioinformatics 11(1): 1–11.

[4] [4] Basora, L., Olive, X. and Dubot, T. (2019). Recent advances in anomaly detection methods applied to aviation, Aerospace 6(11): 117.

[5] [5] Cooper, C., Wang, P., Zhang, J., Gao, R.X., Roney, T., Ragai, I. and Shaffer, D. (2020a). Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals, Procedia Manufacturing 49: 105–111.

[6] [6] Cooper, C., Zhang, J., Gao, R.X., Wang, P. and Ragai, I. (2020b). Anomaly detection in milling tools using acoustic signals and generative adversarial networks, Procedia Manufacturing 48: 372–378.

[7] [7] Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, KDD’96 Proceedings, Portland, USA, pp. 226–231.

[8] [8] Filter, L.V. and Filter, P. (2014). Seven techniques for dimensionality reduction, Technical report, KNIME, Zurich, https://www.knime.com/sites/default/files/inline-images/knime_seventechniquesdatadimreduction.pdf.

[9] [9] Goldin, D.Q. and Kanellakis, P.C. (1995). On similarity queries for time-series data: Constraint specification and implementation, International Conference on Principles and Practice of Constraint Programming, Cassis, France, pp. 137–153.

[10] [10] Hankerson, D., Hoffman, D., Leonard, D. and Linder, C. (2000). Coding Theory and Cryptography: The Essentials, CRC Press, Boca Raton.

[11] [11] Hyndman, R.J., Wang, E. and Laptev, N. (2015). Large-scale unusual time series detection, 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, USA, pp. 1616–1619.

[12] [12] Kamat, P. and Sugandhi, R. (2020). Anomaly detection for predictive maintenance in industry 4.0-a survey, E3S Web of Conferences 170: 02007.

[13] [13] Liang, Y., Wang, S., Li, W. and Lu, X. (2019). Data-driven anomaly diagnosis for machining processes, Engineering 5(4): 646–652.

[14] [14] Mühlbauer, M., Würschinger, H., Polzer, D., Ju, S. and Hanenkamp, N. (2020). Automated data labeling and anomaly detection using airborne sound analysis, Procedia CIRP 93: 1247–1252.

[15] [15] Pathria, R. and Beale, P.D. (2011). Statistical Mechanics, Academic Press/Elsevier, Cambridge.

[16] [16] Schleinkofer, U., Klöpfer, K., Schneider, M. and Bauernhansl, T. (2019). Cyber-physical systems as part of frugal manufacturing systems, Procedia CIRP 81: 264–269.

[17] [17] Siboni, S. and Cohen, A. (2020). Anomaly detection for individual sequences with applications in identifying malicious tools, Entropy 22(6): 649.

[18] [18] ur Rehman, M.H., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y. and Khan, S.U. (2016). Big data reduction methods: A survey, Data Science and Engineering 1(4): 265–284.

[19] [19] Yao, Y.-C., Chen, Y.-H., Liu, C.-H. and Shih, W.-P. (2019). Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm, International Journal of Advanced Manufacturing Technology 103(1): 297–309.

[20] [20] Żabiński, T., Mączka, T., Kluska, J., Madera, M. and Sęp, J. (2019). Condition monitoring in industry 4.0 production systems-The idea of computational intelligence methods application, Procedia CIRP 79: 63–67.

[21] [21] Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong, B., Chen, H. and Chawla, N.V. (2019a). A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, USA, pp. 1409–1416.

[22] [22] Zhang, L., Elghazoly, S. and Tweedie, B. (2019b). Introducing AnomDB: An unsupervised anomaly detection method for CNC machine control data, Annual Conference of the Prognostics and Health Management Society, Scottsdale, USA.