Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_4_a4, author = {Iaremko, Iaroslav and Senkerik, Roman and Jasek, Roman and Lukastik, Petr}, title = {An effective data reduction model for machine emergency state detection from big data tree topology structures}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {601--611}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a4/} }
TY - JOUR AU - Iaremko, Iaroslav AU - Senkerik, Roman AU - Jasek, Roman AU - Lukastik, Petr TI - An effective data reduction model for machine emergency state detection from big data tree topology structures JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 601 EP - 611 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a4/ LA - en ID - IJAMCS_2021_31_4_a4 ER -
%0 Journal Article %A Iaremko, Iaroslav %A Senkerik, Roman %A Jasek, Roman %A Lukastik, Petr %T An effective data reduction model for machine emergency state detection from big data tree topology structures %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 601-611 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a4/ %G en %F IJAMCS_2021_31_4_a4
Iaremko, Iaroslav; Senkerik, Roman; Jasek, Roman; Lukastik, Petr. An effective data reduction model for machine emergency state detection from big data tree topology structures. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 601-611. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a4/
[1] [1] Abdi, H. and Williams, L.J. (2010). Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2(4): 433–459.
[2] [2] Bansal, K. and Bansal, M. (2016). Data clustering and visualization based various machine learning techniques, International Journal of Advanced Research in Computer Science 7(6): 124–128.
[3] [3] Bartenhagen, C., Klein, H.-U., Ruckert, C., Jiang, X. and Dugas, M. (2010). Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, BMC Bioinformatics 11(1): 1–11.
[4] [4] Basora, L., Olive, X. and Dubot, T. (2019). Recent advances in anomaly detection methods applied to aviation, Aerospace 6(11): 117.
[5] [5] Cooper, C., Wang, P., Zhang, J., Gao, R.X., Roney, T., Ragai, I. and Shaffer, D. (2020a). Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals, Procedia Manufacturing 49: 105–111.
[6] [6] Cooper, C., Zhang, J., Gao, R.X., Wang, P. and Ragai, I. (2020b). Anomaly detection in milling tools using acoustic signals and generative adversarial networks, Procedia Manufacturing 48: 372–378.
[7] [7] Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, KDD’96 Proceedings, Portland, USA, pp. 226–231.
[8] [8] Filter, L.V. and Filter, P. (2014). Seven techniques for dimensionality reduction, Technical report, KNIME, Zurich, https://www.knime.com/sites/default/files/inline-images/knime_seventechniquesdatadimreduction.pdf.
[9] [9] Goldin, D.Q. and Kanellakis, P.C. (1995). On similarity queries for time-series data: Constraint specification and implementation, International Conference on Principles and Practice of Constraint Programming, Cassis, France, pp. 137–153.
[10] [10] Hankerson, D., Hoffman, D., Leonard, D. and Linder, C. (2000). Coding Theory and Cryptography: The Essentials, CRC Press, Boca Raton.
[11] [11] Hyndman, R.J., Wang, E. and Laptev, N. (2015). Large-scale unusual time series detection, 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, USA, pp. 1616–1619.
[12] [12] Kamat, P. and Sugandhi, R. (2020). Anomaly detection for predictive maintenance in industry 4.0-a survey, E3S Web of Conferences 170: 02007.
[13] [13] Liang, Y., Wang, S., Li, W. and Lu, X. (2019). Data-driven anomaly diagnosis for machining processes, Engineering 5(4): 646–652.
[14] [14] Mühlbauer, M., Würschinger, H., Polzer, D., Ju, S. and Hanenkamp, N. (2020). Automated data labeling and anomaly detection using airborne sound analysis, Procedia CIRP 93: 1247–1252.
[15] [15] Pathria, R. and Beale, P.D. (2011). Statistical Mechanics, Academic Press/Elsevier, Cambridge.
[16] [16] Schleinkofer, U., Klöpfer, K., Schneider, M. and Bauernhansl, T. (2019). Cyber-physical systems as part of frugal manufacturing systems, Procedia CIRP 81: 264–269.
[17] [17] Siboni, S. and Cohen, A. (2020). Anomaly detection for individual sequences with applications in identifying malicious tools, Entropy 22(6): 649.
[18] [18] ur Rehman, M.H., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y. and Khan, S.U. (2016). Big data reduction methods: A survey, Data Science and Engineering 1(4): 265–284.
[19] [19] Yao, Y.-C., Chen, Y.-H., Liu, C.-H. and Shih, W.-P. (2019). Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm, International Journal of Advanced Manufacturing Technology 103(1): 297–309.
[20] [20] Żabiński, T., Mączka, T., Kluska, J., Madera, M. and Sęp, J. (2019). Condition monitoring in industry 4.0 production systems-The idea of computational intelligence methods application, Procedia CIRP 79: 63–67.
[21] [21] Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong, B., Chen, H. and Chawla, N.V. (2019a). A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, USA, pp. 1409–1416.
[22] [22] Zhang, L., Elghazoly, S. and Tweedie, B. (2019b). Introducing AnomDB: An unsupervised anomaly detection method for CNC machine control data, Annual Conference of the Prognostics and Health Management Society, Scottsdale, USA.