Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_4_a3, author = {Dolo\v{s}, Klara and Meyer, Conrad and Attenberger, Andreas and Steinberger, Jessica}, title = {Forensic driver identification considering an unknown suspect}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {587--599}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a3/} }
TY - JOUR AU - Dološ, Klara AU - Meyer, Conrad AU - Attenberger, Andreas AU - Steinberger, Jessica TI - Forensic driver identification considering an unknown suspect JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 587 EP - 599 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a3/ LA - en ID - IJAMCS_2021_31_4_a3 ER -
%0 Journal Article %A Dološ, Klara %A Meyer, Conrad %A Attenberger, Andreas %A Steinberger, Jessica %T Forensic driver identification considering an unknown suspect %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 587-599 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a3/ %G en %F IJAMCS_2021_31_4_a3
Dološ, Klara; Meyer, Conrad; Attenberger, Andreas; Steinberger, Jessica. Forensic driver identification considering an unknown suspect. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 587-599. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a3/
[1] [1] Acien, A., Morales, A., Vera-Rodriguez, R., Fierrez, J. and Monaco, J.V. (2020). TypeNet: Scaling up keystroke biometrics, International Joint Conference on Biometrics (IJCB), Houston, USA, pp. 1–7, https://ieeexplor e.ieee.org/document/9304908/.
[2] [2] Antal, M. and Szabo, L.Z. (2015). An evaluation of one-class and two-class classification algorithms for keystroke dynamics authentication on mobile devices, 20th International Conference on Control Systems and Computer Science, Bucharest, Romania, pp. 343–350, http://ieeexplore.ieee.org/document/7168452/.
[3] [3] Benzaoui, A., Hadid, A. and Boukrouche, A. (2014). Ear biometric recognition using local texture descriptors, Journal of Electronic Imaging 23(5): 053008, DOI:10.1117/1.JEI.23.5.053008.
[4] [4] Bergamini, C., Oliveira, L., Koerich, A. and Sabourin, R. (2009). Combining different biometric traits with one-class classification, Signal Processing 89(11): 2117–2127.
[5] [5] Bernardi, M.L., Cimitile, M., Martinelli, F. and Mercaldo, F. (2018). Driver and path detection through time-series classification, Journal of Advanced Transportation (3): 1–20.
[6] [6] Bouchrika, I., Goffredo, M., Carter, J. and Nixon, M. (2011). On using gait in forensic biometrics, Journal of Forensic Sciences 56(4): 882–889, DOI: 10.1111/j.1556-4029.2011.01793.x.
[7] [7] Breiman, L. (2001). Random forests, Machine Learning 45(1): 5–32.
[8] [8] Carfora, M.F., Martinelli, F., Mercaldo, F., Nardone, V., Orlando, A., Santone, A. and Vaglini, G. (2019). A “pay-how-you-drive” car insurance approach through cluster analysis, Soft Computing 23(9): 2863–2875, DOI: 10.1007/s00500-018-3274-y.
[9] [9] Champod, C. and Tistarelli, M. (Eds) (2017). Handbook of Biometrics for Forensic Science, Springer, Cham.
[10] [10] Christensen, A.M., Crowder, C.M., Ousley, S.D. and Houck, M.M. (2014). Error and its meaning in forensic science, Journal of Forensic Sciences 59(1): 123–126, DOI: 10.1111/1556-4029.12275.
[11] [11] Dessimoz, D. and Champod, C. (2008). Linkages between Biometrics and Forensic Science, in A.K. Jain et al. (Eds), Handbook of Biometrics, Springer, New York, pp. 425–459.
[12] [12] D’Lima, N. and Mittal, J. (2015). Password authentication using Keystroke Biometrics, 2015 International Conference on Communication, Information Computing Technology (ICCICT), Mumbai, India, pp. 1–6, http://ieeexplore.ieee.org/document/7045681/.
[13] [13] Dološ, K., Meyer, C., Attenberger, A. and Steinberger, J. (2020). Driver identification using in-vehicle digital data in the forensic context of a hit and run accident, Forensic Science International: Digital Investigation 35: 301090.
[14] [14] Eude, T. and Chang, C. (2018). One-class SVM for biometric authentication by keystroke dynamics for remote evaluation, Computational Intelligence 34(1): 145–160, DOI:/10.1111/coin.12122.
[15] [15] Faigman, D.L. (Ed.) (2002). Modern Scientific Evidence: The Law and Science of Expert Testimony, 2nd Edn, West Group, St. Paul.
[16] [16] Ge, Z., Iyer, A.N., Cheluvaraja, S., Sundaram, R. and Ganapathiraju, A. (2017). Neural network based speaker classification and verification systems with enhanced features, Intelligent Systems Conference (IntelliSys), London, UK, pp. 1089–1094, http://ieeexplore.ieee.org/document/8324265/.
[17] [17] Glymour, C., Madigan, D., Pregibon, D. and Smyth, P. (1997). Statistical themes and lessons for data mining, Data Mining and Knowledge Discovery 1(1): 11–28.
[18] [18] Gross, S.R., O’Brien, B., Hu, C. and Kennedy, E. H. (2014). Rate of false conviction of criminal defendants who are sentenced to death, Proceedings of the National Academy of Sciences 111(20): 7230–7235, DOI: 10.1073/pnas.1306417111.
[19] [19] Gupta, S., Buriro, A. and Crispo, B. (2019). DriverAuth: A risk-based multi-modal biometric-based driver authentication scheme for ride-sharing platforms, Computers Security 83: 122–139.
[20] [20] Haber, L. and Haber, R.N. (2004). Error rates for human latent fingerprint examiners, in N. Ratha and R. Bolle (Eds), Automatic Fingerprint Recognition Systems, Springer, New York, pp. 339–360, DOI: 10.1007/0-387-21685-5_17.
[21] [21] Helm, P. and Hagendorff, T. (2021). Beyond the prediction paradigm: Challenges for machine learning in the struggle against organized crime, Law Contemporary Problems 84(3): 1–17.
[22] [22] Houck, M.M. and Budowle, B. (2002). Correlation of microscopic and mitochondrial DNA hair comparisons, Journal of Forensic Sciences 47(5): 964–967.
[23] [23] Ikuesan, A.R. and Venter, H.S. (2017). Digital forensic readiness framework based on behavioral-biometrics for user attribution, IEEE Conference on Application, Information and Network Security (AINS), Miri, Malaysia, pp. 54–59, http://ieeexplore.ieee.org/docu ment/8270424/.
[24] [24] Khan, S.S. and Madden, M.G. (2010). A survey of recent trends in one class classification, in L. Coyle and J. Freyne (Eds), Artificial Intelligence and Cognitive Science, Springer, Berlin, pp. 188–197, DOI: 10.1007/978-3-642-17080-5_21.
[25] [25] Kloosterman, A., Sjerps, M. and Quak, A. (2014). Error rates in forensic DNA analysis: Definition, numbers, impact and communication, Forensic Science International: Genetics 12: 77–85.
[26] [26] Koehler, J.J. and Liu, S. (2021). Fingerprint error rate on close non-matches, Journal of Forensic Sciences 66(1): 129–134, DOI: 10.1111/1556-4029.14580.
[27] [27] Koenig, B.E. (1986). Spectrographic voice identification: A forensic survey, Journal of the Acoustical Society of America 79(6): 2088–2090, DOI: 10.1121/1.393170.
[28] [28] Kupin, A., Moeller, B., Jiang, Y., Banerjee, N.K. and Banerjee, S. (2019). Task-driven biometric authentication of users in virtual reality (VR) environments, in I. Kompatsiaris et al. (Eds), MultiMedia Modeling, Springer, Cham, pp. 55–67, DOI: 10.1007/978-3-030-05710-7_5.
[29] [29] Kwak, B.I., Woo, J. and Kim, H.K. (2017). Know your master: Driver profiling-based anti-theft method, arXiv 1704.05223, http://arxiv.org/abs/1704.05223.
[30] [30] Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest, R News 2(3): 18–22.
[31] [31] Lieberman, J.D., Carrell, C.A., Miethe, T.D. and Krauss, D.A. (2008). Gold versus platinum: Do jurors recognize the superiority and limitations of DNA evidence compared to other types of forensic evidence?, Psychology, Public Policy, and Law 14(1): 27–62, DOI: 10.1037/1076-8971.14.1.27.
[32] [32] Mack, B., Roscher, R. and Waske, B. (2014). Can I trust my one-class classification?, Remote Sensing 6(9): 8779–8802.
[33] [33] Mack, B. and Waske, B. (2017). In-depth comparisons of MaxEnt, biased SVM and one-class SVM for one-class classification of remote sensing data, Remote Sensing Letters 8(3): 290–299, DOI: 10.1080/2150704X.2016.1265689.
[34] [34] Martinelli, F., Mercaldo, F., Orlando, A., Nardone, V., Santone, A. and Sangaiah, A.K. (2020). Human behavior characterization for driving style recognition in vehicle system, Computers Electrical Engineering 83, Article 102504, DOI: 10.1016/j.compeleceng.2017.12.050.
[35] [35] Mashao, D.J. and Skosan, M. (2006). Combining classifier decisions for robust speaker identification, Pattern Recognition 39(1): 147–155.
[36] [36] Mordini, E. (2017). Ethics and policy of forensic biometrics, in M. Tistarelli and C. Champod (Eds), Handbook of Biometrics for Forensic Science, Springer, Cham, pp. 353–365, DOI: 10.1007/978-3-319-50673-9_16.
[37] [37] Märkel, U. and Dološ, K. (2017). Tree species site suitability as a combination of occurrence probability and growth and derivation of priority regions for climate change adaptation, Forests 8(6): 181.
[38] [38] Müller, C. (Ed.) (2007). Speaker Classification I: Fundamentals, Features, and Methods, Lecture Notes in Computer Science, Vol. 4343, Springer, Berlin, DOI: 10.1007/978-3-540-74200-5.
[39] [39] Oshiro, T.M., Perez, P.S. and Baranauskas, J.A. (2012). How many trees in a random forest?, in D. Hutchison et al. (Eds), Machine Learning and Data Mining in Pattern Recognition, Springer, Berlin, pp. 154–168, DOI: 10.1007/978-3-642-31537-4_13.
[40] [40] Page, M., Taylor, J. and Blenkin, M. (2011). Forensic identification science evidence since Daubert: Part II-Judicial reasoning in decisions to exclude forensic identification evidence on grounds of reliability: Identification evidence since Daubert (II), Journal of Forensic Sciences 56(4): 913–917, DOI: 10.1111/j.1556-4029.2011.01776.x.
[41] [41] Remeli, M., Lestyan, S., Acs, G. and Biczok, G. (2019). Automatic driver identification from in-vehicle network logs, arXiv 1911.09508, http://arxiv.org/abs/1911.09508.
[42] [42] Reynolds, D. (1994). Experimental evaluation of features for robust speaker identification, IEEE Transactions on Speech and Audio Processing 2(4): 639–643.
[43] [43] Ross, A., Banerjee, S. and Chowdhury, A. (2020). Security in smart cities: A brief review of digital forensic schemes for biometric data, Pattern Recognition Letters 138: 346–354, DOI: 10.1016/j.patrec.2020.07.009.
[44] [44] Saks, M.J. and Koehler, J.J. (2005). The coming paradigm shift in forensic identification science, Science 309(5736): 892–895, DOI: 10.1126/science.1111565.
[45] [45] Stenzel, S., Fassnacht, F.E., Mack, B. and Schmidtlein, S. (2017). Identification of high nature value grassland with remote sensing and minimal field data, Ecological Indicators 74: 28–38.
[46] [46] Thompson, W. (2006). Tarnish on the “gold standard”: Recent problems in forensic DNA testing, The Champion 30: 10–16.
[47] [47] Tirumala, S.S., Shahamiri, S.R., Garhwal, A.S. and Wang, R. (2017). Speaker identification features extraction methods: A systematic review, Expert Systems with Applications 90: 250–271.
[48] [48] Turunen, E. and Dološ, K. (2021). Revealing driver’s natural behavior-A GUHA data mining approach, Mathematics 9(15): 1818.
[49] [49] Wakita, T., Ozawa, K., Miyajima, C., Igarashi, K., Itou, K., Takeda, K. and Itakura, F. (2005). Driver identification using driving behavior signals, IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, pp. 907–912, http://ieeexplore.ieee.org/document/1520171/.
[50] [50] White, D., Dunn, J.D., Schmid, A.C. and Kemp, R.I. (2015). Error rates in users of automatic face recognition software, PLOS ONE 10(10): e0139827, DOI: 10.1371/journal.pone.0139827.