Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_4_a12, author = {Bach, Ma{\l}gorzata and Werner, Aleksandra and Mrozik, Magda and Cyran, Krzysztof A.}, title = {A hierarchy of finite state machines as a scenario player in interactive training of pilots in flight simulators}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {713--727}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a12/} }
TY - JOUR AU - Bach, Małgorzata AU - Werner, Aleksandra AU - Mrozik, Magda AU - Cyran, Krzysztof A. TI - A hierarchy of finite state machines as a scenario player in interactive training of pilots in flight simulators JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 713 EP - 727 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a12/ LA - en ID - IJAMCS_2021_31_4_a12 ER -
%0 Journal Article %A Bach, Małgorzata %A Werner, Aleksandra %A Mrozik, Magda %A Cyran, Krzysztof A. %T A hierarchy of finite state machines as a scenario player in interactive training of pilots in flight simulators %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 713-727 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a12/ %G en %F IJAMCS_2021_31_4_a12
Bach, Małgorzata; Werner, Aleksandra; Mrozik, Magda; Cyran, Krzysztof A. A hierarchy of finite state machines as a scenario player in interactive training of pilots in flight simulators. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 713-727. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a12/
[1] [1] Adrego da Rocha, A.M. (1999). Synthesis and simulation of reprogrammable control units from hierarchical specification, PhD thesis, University of Aveiro.
[2] [2] Barkalov, A., Titarenko, L. and Mielcarek, K. (2020). Improving characteristics of LUT-based Mealy FSMs, International Journal of Applied Mathematics Computer Science 30(4): 745–759, DOI: 10.34768/amcs-2020-0055.
[3] [3] Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis, Springer, New York, DOI: 10.1007/978-1-4757-4286-2.
[4] [4] Bernard, M. (2002). Examining a Metric for Predicting the Accessibility of Information within Hypertext Structures, PhD thesis, Wichita State University, Wichita.
[5] [5] Bower, M., Howe, C., McCredie, N., Robinson, A. and Grover, D. (2014). Augmented reality in education-Cases, places, and potentials, Educational Media International 51(1): 1–15.
[6] [6] Brown, L. (2017). The next generation classroom: Transforming aviation training with augmented reality, National Training Aircraft Symposium NTAS 2.0, Daytona Beach, USA, https://commons.erau.edu/ntas/2017/presentations/40/.
[7] [7] Camilleri,M. (2018). Travel Marketing, Tourism Economics and the Arline Product, Springer Nature, Cham, Chapter 12, pp. 191–204, DOI: 10.1007/978-3-319-49849-2-12.
[8] [8] Caudell, T. and Mizell, D.W. (1992). Augmented reality: An application of heads-up display technology to manual manufacturing processes, Proceedings of the 25th Hawaii International Conference on System Sciences, Kauai, USA, Vol. 2, pp. 659–669
[9] [9] Cerqueira, C. and Kirner, C. (2012). Developing educational applications with a nonprogramming augmented reality authoring tool, World Conference on Educational Multimedia, Hypermedia and Telecommunications (EDMEDIA), Denver, USA, pp. 2816–2825.
[10] [10] Cox, J. (2020). Training, Checking and Recency, Safety Resources of the EASA Community, Section: Air Operations, European Union Aviation Safety Agency, Cologne, https://www.easa.europa.eu/community/content/training-checking-and-recency.
[11] [11] Cyran, K.A., Moczulski, W., Myszor, D., Paszkuta, M., Ruranski, A., Kalisch, M., Cyran, J., Adamczyk, M. and Timofiejczuk, A. (2018a). Immersive human-machine interface for controlling the operation of the Telerescuer robot, International Journal of Advances in Computer Science and Its Applications 8(1): 322–326.
[12] [12] Cyran, K. A., Paszkuta, M., Myszor, D., Rohn, T., Drosik, T., Adamczyk, M. and Moczulski, W. (2018b). UAV-based anti-smog monitoring of the quality of exhausts from private chimneys in urban areas, Towards a Circular Economy: 7th International Symposium and Environmental Exhibition, Vienna, Austria.
[13] [13] Dhaliwal, A. (2019). Augmented Reality for the Aviation Industry: Getting Ready for Take Off, Atheer, Santa Clara, https://content.atheerair.com/hubfs/eBooks/Aviation-eBook.pdf?t=1541468052547.
[14] [14] Eschen, H., Kötter, T., Rodeck, R., Harnisch, M. and Schüppstuhl, T. (2018). Augmented and virtual reality for inspection and maintenance processes in the aviation industry, Procedia Manufacturing 19: 156–163, DOI: 10.1016/j.promfg.2018.01.022.
[15] [15] FAA (2020). Benefit-Cost Analysis, Federal Aviation Administration, Washington, https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost/.
[16] [16] Feiner, S., Macintyre, B. and Seligmann, D. (1993). Knowledge-based augmented reality, Communications of the ACM 36(7): 53–62, DOI:10.1145/159544.159587.
[17] [17] Ferdania, D.F., Irawati, Garminia, H., Akhmaloka and Rachmansyah, K.A. (2021). Minimal state automata for detecting a β globin gene mutation, International Journal of Applied Mathematics and Computer Science 31(2): 337–351, DOI: 10.34768/amcs-2021-0023.
[18] [18] Gagné, R.M. (1965). The Conditions of Learning, Holt, Rinehart and Winston, New York.
[19] [19] Giantamidis, G., Tripakis, S. and Basagianis, S. (2019). Learning Moore machines from input-output traces, International Journal on Software Tools for Technology Transfer 23: 1–29, DOI: 10.1007/s10009-019-00544-0.
[20] [20] Goel, A. (2018). Augmented reality in aviation: Changing the face of the sector through training and simulated experience, eLearning Industry, https://elearningindustry.com/augmented-reality-in-aviation-changing-face-sector-training-simulated-experience.
[21] [21] Grzegorczyk, T., Śliwinski, R. and Kaczmarek, J. (2019). Attractiveness of augmented reality to consumers, Technology Analysis and Strategic Management 31(11): 1257–1269(13), DOI: 10.1080/09537325.2019.1603368.
[22] [22] Haritos, T. and Macchiarella, N.D. (2005). A mobile application of augmented reality for aerospace maintenance training, 24th Digital Avionics Systems Conference, Washington, USA, Vol. 1, pp. 5.B.3–5.1.
[23] [23] Hejase, M., Oguz, A., Kurt, A., Ozguner, U. and Redmill, K. (2016). A hierarchical hybrid state system based controller design approach for an autonomous UAS mission, 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, USA, DOI: 10.2514/6.2016-3294.
[24] [24] Kearns, S.K., Mavin, T.J. and Hodge, S. (2020). Engaging the Next Generation of Aviation Professionals, Routledge, London.
[25] [25] Khan, T., Johnston, K. and Ophoff, J. (2019). The impact of an augmented reality application on learning motivation of students, Advances in Human-Computer Interaction 2019: 1–14, Article ID: 7208494.
[26] [26] Ledermann, F. and Schmalstieg, D. (2005). April: A high-level framework for creating augmented reality presentations, IEEE Virtual Reality, Bonn, Germany, pp. 187–194, DOI: 10.1109/VR.2005.1492773.
[27] [27] Lee, K. (2012). Augmented reality in education and training, TechTrends 56(2): 13–22, DOI: 10.1007/s11528-012-0559-3.
[28] [28] Markets and Markets (2019). Augmented and virtual reality (AR VR) market in aviation global forecast to 2025 by technology (AR, VR), function (training, operations), component (hardware, software), application (on-board, off-board), product, vertical, and region, Market Research Report AS 4553, Markets and Markets, https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=230427667.
[29] [29] Moir, I. and Seabridge, A. (2008). Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration, 3rd Edn, Wiley, Chichester, DOI: 10.1002/9780470770931.
[30] [30] Myers, P.L., Starr, A.W. and Mullins, K. (2018). Flight simulator fidelity, training transfer, and the role of instructors in optimizing learning, International Journal of Aviation, Aeronautics, and Aero-Space 5(1), Article 6.
[31] [31] Neumann, U. and Majoros, A. (1998). Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance, IEEE 1998 Virtual Reality Annual International Symposium, Atlanta, USA, pp. 4–11, DOI: 10.1109/VRAIS.1998.658416.
[32] [32] Olsson, M. (2016). Behavior Trees for Decision-Making in Autonomous Driving, Master thesis, KTH Royal Institute of Technology, Stockholm.
[33] [33] Page, R.L. (2004). Brief history of flight simulation, Semantic Scholar, Corpus ID: 211478463, DOI: 10.1.1.132.5428.
[34] [34] Parkinson, S.R., Hill, M.D., Sisson, N. and Viera, C. (1988). Effects of breadth, depth and number of responses on computer menu search performance, International Journal of Man-Machine Studies 28(6): 683–692.
[35] [35] Parsons, D. (2020). Full flight simulators incorporate VR for next generation of pilots, Aviation Today, https://www.aviationtoday.com/2019/08/01/training-brain-mind/.
[36] [36] Plummer, D., Karamouzis, F., Alvarez, G., Hill, J., Sallam, R., Daigler, J., Hunter, R., Litan, A., Resnick, M., Prentice, B., Natis, Y. and Gaughan, D. (2019). Gartner’s Top Strategic Predictions for 2020 and Beyond: Technology Changes the Human Condition, Gartner, Inc., Stamford, https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/450595-top-strategic-predictions-for-2020-and-beyond.pdf.
[37] [37] Rabbath, C. (2013). A finite-state machine for collaborative airlift with a formation of unmanned air vehicles, Journal of Intelligent Robotic Systems 70: 233–253.
[38] [38] Rypulak, A. (2017). Using a virtual reality environment to teach practical skills of aviation personnel, EduAkcja, https://eduakcja.eu/files/pdf/143.pdf, (in Polish).
[39] [39] Safi, M., Chung, J. and Pradhan, P. (2019). Review of augmented reality in aerospace industry, Aircraft Engineering and Aerospace Technology 91(9): 1187–1194, DOI: 10.1108/AEAT-09-2018-0241.
[40] [40] Schaffernak, H., Moesl, B., Vorraber, W. and Koglbauer, I.V. (2020). Potential augmented reality application areas for pilot education: An exploratory study, Education Sciences 10(4): 86, DOI: 10.3390/educsci10040086.
[41] [41] Singh, V. and Singh, A. (2018). Learn-as-you-go: Feedback-driven result ranking and query refinement for interactive data exploration, Procedia Computer Science 125: 550–559.
[42] [42] Sklyarov, V., da Rocha, A.A. and de Ferrari, A.B. (1998). Synthesis of Reconfigurable Control Devices Based on Object-Oriented Specifications, Springer, Boston, DOI: 10.1007/978-1-4757-4419-4_7.
[43] [43] Spagnolo, C., Sumsurooah, S., Hill, C. and Bozhko, S. (2018). Finite state machine control for aircraft electrical distribution system, Journal of Engineering 2018(13): 506–511, DOI: 10.1049/joe.2018.0039.
[44] [44] Stańczyk, U., Cyran, K. and Pochopień, B. (2007). Theory of Logic Circuits. Vol. 2: Circuit Design and Analysis, Silesian University of Technology, Gliwice, (in Polish).
[45] [45] Turner, R., Hooda, S., Gersh, J. and Cancro, G. (2008). ExecSpec: Visually designing and operating a finite state machine-based spacecraft autonomy system Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation for Space, Pasadena, USA, DOI: 10.1.1.520.1445.
[46] [46] Valenta, V. (2018). Effects of airline industry growth on pilot training, Magazine of Aviation Development 6(4): 52–56.
[47] [47] Velichko, M. (2020). How virtual and augmented reality are used in aviation training and other use cases, Jasoren, https://jasoren.com/how-virtual-and-augmented-reality-are-used-in-aviation-training-and-other-use-cases.
[48] [48] Wang, D., Yang, S., Wang, L. and Liu, W. (2016). Hardware-in-the-loop simulation for aircraft electric power system, 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles/International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, pp. 1–5.
[49] [49] Yon, Z. (2015). Modeling and simulation of controllers of aircraft power supply system based on finite state machine, Semantic Scholar: Engineering, Corpus ID: 114484490.
[50] [50] Young, J.D. (2015). Development of a Finite State Machine for a Small Unmanned Aircraft System Using Experimental Design, Student graduate works, AFIT-ENS-MS-15-M-146, Wright-Patterson Air Force Base, Dayton, https://scholar.afit.edu/etd/136.
[51] [51] Zajac,W., Andrzejewski, G., Krzywicki, K. and Królikowski, T. (2019). Finite state machine based modelling of discrete control algorithm in lad diagram language with use of new generation engineering software, Procedia Computer Science 159(2019): 2560–2569.
[52] [52] Zaphiris, P. (2000). Depth vs. breath in the arrangement of web links, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Diego, USA, pp. 453–456.
[53] [53] Zazula, A., Myszor, D., Antemijczuk, O. and Cyran, K. (2013). Flight simulators-From electromechanical analogue computers to modern laboratory of flying, Advances in Science and Technology Research Journal 7(17): 51–55, DOI: 10.5604/20804075.1036998.
[54] [54] Zhang, J., Sheng, Y., Hao, W., Wang, P.P., Tian, P., Miao, K. and Pickering, C.K. (2010). A context-aware framework supporting complex ubiquitous scenarios with augmented reality enabled, 5th International Conference on Pervasive Computing and Applications, Maribor, Slovenia, pp. 69–74, DOI: 10.1109/ICPCA.2010.5704077.
[55] [55] Zhu, J., Ong, S. and Nee, A. (2015). A context-aware augmented reality assisted maintenance system, International Journal of Computer Integrated Manufacturing 28(2): 213–225, DOI: 10.1080/0951192X.2013.874589.